ﻻ يوجد ملخص باللغة العربية
Desingularization is the problem of finding a left multiple of a given Ore operator in which some factor of the leading coefficient of the original operator is removed. An order-degree curve for a given Ore operator is a curve in the $(r,d)$-plane such that for all points $(r,d)$ above this curve, there exists a left multiple of order $r$ and degree $d$ of the given operator. We give a new proof of a desingularization result by Abramov and van Hoeij for the shift case, and show how desingularization implies order-degree curves which are extremely accurate in examples.
It is well known that for a first order system of linear difference equations with rational function coefficients, a solution that is holomorphic in some left half plane can be analytically continued to a meromorphic solution in the whole complex pla
Polynomial remainder sequences contain the intermediate results of the Euclidean algorithm when applied to (non-)commutative polynomials. The running time of the algorithm is dependent on the size of the coefficients of the remainders. Different ways
We present a Sage implementation of Ore algebras. The main features for the most common instances include basic arithmetic and actions; gcrd and lclm; D-finite closure properties; natural transformations between related algebras; guessing; desingular
Bootstrap percolation is a deterministic cellular automaton in which vertices of a graph~$G$ begin in one of two states, dormant or active. Given a fixed integer $r$, a dormant vertex becomes active if at any stage it has at least $r$ active neighbor
In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary re