ﻻ يوجد ملخص باللغة العربية
This paper deals with Prym eigenforms which are introduced previously by McMullen. We prove several results on the directional flow on those surfaces, related to complete periodicity (introduced by Calta). More precisely we show that any homological direction is algebraically periodic, and any direction of a regular closed geodesic is a completely periodic direction. As a consequence we draw that the limit set of the Veech group of every Prym eigenform in some Prym loci of genus 3,4, and 5 is either empty, one point, or the full circle at infinity. We also construct new examples of translation surfaces satisfying the topological Veech dichotomy. As a corollary we obtain new translation surfaces whose Veech group is infinitely generated and of the first kind.
This paper is devoted to the classification of the infinite families of Teichmuller curves generated by Prym eigenforms of genus 3 having a single zero. These curves were discovered by McMullen. The main invariants of our classification is the discri
This paper is devoted to the classification of GL^+(2,R)-orbit closures of surfaces in the intersection of the Prym eigenform locus with various strata of quadratic differentials. We show that the following dichotomy holds: an orbit is either closed
The minimal stratum in Prym loci have been the first source of infinitely many primitive, but not algebraically primitive Teichmueller curves. We show that the stratum Prym(2,1,1) contains no such Teichmueller curve and the stratum Prym(2,2) at most
This paper is devoted to the classification of connected components of Prym eigenform loci in the strata H(2,2)^odd and H(1,1,2) in the Abelian differentials bundle in genus 3. These loci, discovered by McMullen are GL^+(2,R)-invariant submanifolds (
This paper has been withdrawn due to an error in the proof of the main theorem.