ترغب بنشر مسار تعليمي؟ اضغط هنا

The Weight Distribution of a Class of Cyclic Codes Related to Hermitian Forms Graphs

155   0   0.0 ( 0 )
 نشر من قبل Sihuang Hu
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The determination of weight distribution of cyclic codes involves evaluation of Gauss sums and exponential sums. Despite of some cases where a neat expression is available, the computation is generally rather complicated. In this note, we determine the weight distribution of a class of reducible cyclic codes whose dual codes may have arbitrarily many zeros. This goal is achieved by building an unexpected connection between the corresponding exponential sums and the spectrums of Hermitian forms graphs.



قيم البحث

اقرأ أيضاً

The distance distribution of a code is the vector whose $i^text{th}$ entry is the number of pairs of codewords with distance $i$. We investigate the structure of the distance distribution for cyclic orbit codes, which are subspace codes generated by the action of $mathbb{F}_{q^n}^*$ on an $mathbb{F}_q$-subspace $U$ of $mathbb{F}_{q^n}$. We show that for optimal full-length orbit codes the distance distribution depends only on $q,,n$, and the dimension of $U$. For full-length orbit codes with lower minimum distance, we provide partial results towards a characterization of the distance distribution, especially in the case that any two codewords intersect in a space of dimension at most 2. Finally, we briefly address the distance distribution of a union of optimal full-length orbit codes.
We consider $q$-ary (linear and nonlinear) block codes with exactly two distances: $d$ and $d+delta$. Several combinatorial constructions of optimal such codes are given. In the linear (but not necessary projective) case, we prove that under certain conditions the existence of such linear $2$-weight code with $delta > 1$ implies the following equality of great common divisors: $(d,q) = (delta,q)$. Upper bounds for the maximum cardinality of such codes are derived by linear programming and from few-distance spherical codes. Tables of lower and upper bounds for small $q = 2,3,4$ and $q,n < 50$ are presented.
In this paper, we make some progress towards a well-known conjecture on the minimum weights of binary cyclic codes with two primitive nonzeros. We also determine the Walsh spectrum of $Tr(x^d)$ over $F_{2^{m}}$ in the case where $m=2t$, $d=3+2^{t+1}$ and $gcd(d, 2^{m}-1)=1$.
Usually, it is difficult to determine the weight distribution of an irreducible cyclic code. In this paper, we discuss the case when an irreducible cyclic code has the maximal number of distinct nonzero weights and give a necessary and sufficient con dition. In this case, we also obtain a divisible property for the weight of a codeword. Further, we present a necessary and sufficient condition for an irreducible cyclic code with only one nonzero weight. Finally, we determine the weight distribution of an irreducible cyclic code for some cases.
We study orbit codes in the field extension ${mathbb F}_{q^n}$. First we show that the automorphism group of a cyclic orbit code is contained in the normalizer of the Singer subgroup if the orbit is generated by a subspace that is not contained in a proper subfield of ${mathbb F}_{q^n}$. We then generalize to orbits under the normalizer of the Singer subgroup. In that situation some exceptional cases arise and some open cases remain. Finally we characterize linear isometries between such codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا