ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures

123   0   0.0 ( 0 )
 نشر من قبل Ivan Borzenets
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the nature of the transitions between the normal and the superconducting branches of superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (normal to superconducting) transitions to electron overheating. In particular, we demonstrate that the retrapping current corresponds to the critical current at an elevated temperature, where the heating is caused by the retrapping current itself. The superconducting gap in the leads suppresses the hot electron outflow, allowing us to further study electron thermalization by phonons at low temperatures ($T lesssim 1$K). The relationship between the applied power and the electron temperature was found to be $Ppropto T^3$, which we argue is consistent with cooling due to electron-phonon interactions.



قيم البحث

اقرأ أيضاً

We investigate the basic charge and heat transport properties of charge neutral epigraphene at sub-kelvin temperatures, demonstrating nearly logarithmic dependence of electrical conductivity over more than two decades in temperature. Using graphenes sheet conductance as in-situ thermometer, we present a measurement of electron-phonon heat transport at mK temperatures and show that it obeys the $T^4$ dependence characteristic for clean two-dimensional conductor. Based on our measurement we predict the noise-equivalent power of $sim 10^{-22}~{rm W}/sqrt{{rm Hz}}$ of epigraphene bolometer at the low end of achievable temperatures.
We investigate the Josephson effect in a bilayer graphene flake contacted by two monolayer sheet deposited by superconducting electrodes. It is found that when the electrodes are attached to the different layers of the bilayer, the Josephson current is in a $pi$ state when the bilayer region is undoped and in the absence of vertical bias. Applying doping or bias to the junction reveals $pi-0$ transitions which can be controlled by varying the temperature and the junction length. The supercurrent reversal here is very different from the ferromagnetic Josephson junctions where the spin degree of freedom plays the key role. We argue that the scattering processes accompanied by layer and sublattice index change give rise to the scattering phases which their effect varies with doping and the bias. Such scattering phases are responsible for the $pi-0$ transitions. On the other hand if both of the electrodes are coupled to the same layer of the flake or the flake has AA stacking instead of common AB, the junction will be always in $0$ state since layer or sublattice index is not changed.
Unwanted fluctuations over time, in short, noise, are detrimental to device performance, especially for quantum coherent circuits. Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on interf acing single magnons to superconducting qubits. However, the coupling of several components often introduces additional noise to the system, degrading its coherence. Researching the temporal behavior can help to identify the underlying noise sources, which is a vital step in increasing coherence times and the hybrid device performance. Yet, the frequency noise of the ferromagnetic resonance (FMR) has so far been unexplored. Here, we investigate such FMR frequency fluctuations of a YIG sphere down to mK-temperatures, and find them independent of temperature and drive power. This suggests that the measured frequency noise in YIG is dominated by so far undetermined noise sources, which properties are not consistent with the conventional model of two-level systems, despite their effect on the sample linewidth. Moreover, the functional form of the FMR frequency noise power spectral density (PSD) cannot be described by a simple power law. By employing time-series analysis, we find a closed function for the PSD that fits our observations. Our results underline the necessity of coherence improvements to magnon systems for useful applications in quantum magnonics.
Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest quality graphen e-superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here we report graphene based Josephson junctions with one-dimensional edge contacts of Molybdenum Rhenium. The contacts exhibit a well defined, transparent interface to the graphene, have a critical magnetic field of 8 Tesla at 4 Kelvin and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-P{e}rot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 $mu$m. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems on GaAs/AlGaAs heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional non-magnetic high-mobi lity 2D systems, the thermopower in our devices increases with decreasing temperature below 0.3 K, reaching values in excess of 100 $mu$V/K, thus exceeding the free electron estimate by more than two orders of magnitude. With support from a parallel independent study of the local density of states, we suggest such a phenomenon to be linked to intrinsic localized states and many-body spin correlations in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا