ﻻ يوجد ملخص باللغة العربية
The steady state for a system of N particle under the influence of an external field and a Gaussian thermostat and colliding with random virtual scatterers can be obtained explicitly in the limit of small field. We show the sequence of steady state distribution, as N varies, forms a chaotic sequence in the sense that the k particle marginal, in the limit of large N, is the k-fold tensor product of the 1 particle marginal. We also show that the chaoticity properties holds in the stronger form of entropic chaoticity.
We develop a nonlinear multigrid method to solve the steady state of microflow, which is modeled by the high order moment system derived recently for the steady-state Boltzmann equation with ES-BGK collision term. The solver adopts a symmetric Gauss-
We investigate the resonance spectrum of the Henon-Heiles potential up to twice the barrier energy. The quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to approximate the oscillating part of the
Out-of-equilibrium behavior is explored in the one-dimensional anisotropic $XY$ model. Initially preparing the system in the isotropic $XX$ model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is genera
The information-theoretic formulation of quantum measurement uncertainty relations (MURs), based on the notion of relative entropy between measurement probabilities, is extended to the set of all the spin components for a generic spin s. For an appro
We consider the defect production of a quantum system, initially prepared in a current-carrying non-equilibrium state, during its unitary driving through a quantum critical point. At low values of the initial current, the quantum Kibble-Zurek scaling