ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropic Chaoticity for the Steady State of a Current Carrying System

180   0   0.0 ( 0 )
 نشر من قبل Federico Bonetto
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The steady state for a system of N particle under the influence of an external field and a Gaussian thermostat and colliding with random virtual scatterers can be obtained explicitly in the limit of small field. We show the sequence of steady state distribution, as N varies, forms a chaotic sequence in the sense that the k particle marginal, in the limit of large N, is the k-fold tensor product of the 1 particle marginal. We also show that the chaoticity properties holds in the stronger form of entropic chaoticity.



قيم البحث

اقرأ أيضاً

554 - Zhicheng Hu , Ruo Li 2014
We develop a nonlinear multigrid method to solve the steady state of microflow, which is modeled by the high order moment system derived recently for the steady-state Boltzmann equation with ES-BGK collision term. The solver adopts a symmetric Gauss- Seidel iterative scheme nested by a local Newton iteration on grid cell level as its smoother. Numerical examples show that the solver is insensitive to the parameters in the implementation thus is quite robust. It is demonstrated that expected efficiency improvement is achieved by the proposed method in comparison with the direct time-stepping scheme.
129 - J. Kaidel , P. Winkler , M. Brack 2003
We investigate the resonance spectrum of the Henon-Heiles potential up to twice the barrier energy. The quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to approximate the oscillating part of the resonance spectrum semiclassically and Strutinsky smoothing to obtain its smooth part. Although the system in this energy range is almost chaotic, it still contains stable periodic orbits. Using Gutzwillers trace formula, complemented by a uniform approximation for a codimension-two bifurcation scenario, we are able to reproduce the coarse-grained quantum-mechanical density of states very accurately, including only a few stable and unstable orbits.
Out-of-equilibrium behavior is explored in the one-dimensional anisotropic $XY$ model. Initially preparing the system in the isotropic $XX$ model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is genera ted by rapidly changing the exchange interaction anisotropy and external magnetic field. Relaxation to a nonequilibrium steady state is studied analytically at the critical transverse Ising point, where correlation functions may be computed in closed form. For arbitrary values of anisotropy and external field, an effective generalized Gibbs ensemble is shown to accurately describe observables in the long-time limit. Additionally, we find spatial oscillations in the exponentially decaying, transverse spin-spin correlation functions with wavelength set by the magnetization jump across the initial domain wall. This wavelength depends only weakly on anisotropy and magnetic field in contrast to the current, which is highly dependent on these parameters.
The information-theoretic formulation of quantum measurement uncertainty relations (MURs), based on the notion of relative entropy between measurement probabilities, is extended to the set of all the spin components for a generic spin s. For an appro ximate measurement of a spin vector, which gives approximate joint measurements of the spin components, we define the device information loss as the maximum loss of information per observable occurring in approximating the ideal incompatible components with the joint measurement at hand. By optimizing on the measuring device, we define the notion of minimum information loss. By using these notions, we show how to give a significant formulation of state independent MURs in the case of infinitely many target observables. The same construction works as well for finitely many observables, and we study the related MURs for two and three orthogonal spin components. The minimum information loss plays also the role of measure of incompatibility and in this respect it allows us to compare quantitatively the incompatibility of various sets of spin observables, with different number of involved components and different values of s.
We consider the defect production of a quantum system, initially prepared in a current-carrying non-equilibrium state, during its unitary driving through a quantum critical point. At low values of the initial current, the quantum Kibble-Zurek scaling for the production of defects is recovered. However, at large values of the initial current, i.e., very far from an initial equilibrium situation, a universal scaling of the defect production is obtained which shows an algebraic dependence with respect to the initial current value. These scaling predictions are demonstrated by the exactly solvable Ising quantum chain where the current-carrying state is selected through the imposition of a Dzyaloshinskii-Moriya interaction term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا