ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Multiple Object Tracking Using Mutually Repulsive Active Membranes

167   0   0.0 ( 0 )
 نشر من قبل Joshua Shaevitz
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of social and group behavior in interacting organisms require high-throughput analysis of the motion of a large number of individual subjects. Computer vision techniques offer solutions to specific tracking problems, and allow automated and efficient tracking with minimal human intervention. In this work, we adopt the open active contour model to track the trajectories of moving objects at high density. We add repulsive interactions between open contours to the original model, treat the trajectories as an extrusion in the temporal dimension, and show applications to two tracking problems. The walking behavior of Drosophila is studied at different population density and gender composition. We demonstrate that individual male flies have distinct walking signatures, and that the social interaction between flies in a mixed gender arena is gender specific. We also apply our model to studies of trajectories of gliding Myxococcus xanthus bacteria at high density. We examine the individual gliding behavioral statistics in terms of the gliding speed distribution. Using these two examples at very distinctive spatial scales, we illustrate the use of our algorithm on tracking both short rigid bodies (Drosophila) and long flexible objects (Myxococcus xanthus). Our repulsive active membrane model reaches error rates better than $5times 10^{-6}$ per fly per second for Drosophila tracking and comparable results for Myxococcus xanthus.



قيم البحث

اقرأ أيضاً

We present an automated method to track and identify neurons in C. elegans, called fast Deep Learning Correspondence or fDLC, based on the transformer network architecture. The model is trained once on empirically derived synthetic data and then pred icts neural correspondence across held-out real animals via transfer learning. The same pre-trained model both tracks neurons across time and identifies corresponding neurons across individuals. Performance is evaluated against hand-annotated datasets, including NeuroPAL [1]. Using only position information, the method achieves 80.0% accuracy at tracking neurons within an individual and 65.8% accuracy at identifying neurons across individuals. Accuracy is even higher on a published dataset [2]. Accuracy reaches 76.5% when using color information from NeuroPAL. Unlike previous methods, fDLC does not require straightening or transforming the animal into a canonical coordinate system. The method is fast and predicts correspondence in 10 ms making it suitable for future real-time applications.
230 - C. Favard , J. Ehrig , J. Wenger 2010
For more than ten years now, many efforts have been done to identify and characterize nature of obstructed diffusion in model and cellular lipid membranes. Amongst all the techniques developed for this purpose, FCS, by means of determination of FCS d iffusion laws, has been shown to be a very efficient approach. In this paper, FCS diffusion laws are used to probe the behavior of a pure lipid and a lipid mixture at temperatures below and above phase transitions, both numerically, using a full thermodynamic model, and experimentally. In both cases FCS diffusion laws exhibit deviation from free diffusion and reveal the existence of domains. The variation of these domains mean size with temperature is in perfect correlation with the enthalpy fluctuation.
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animals brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 150 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.
This work details the problem of aerial target capture using multiple UAVs. This problem is motivated from the challenge 1 of Mohammed Bin Zayed International Robotic Challenge 2020. The UAVs utilise visual feedback to autonomously detect target, app roach it and capture without disturbing the vehicle which carries the target. Multi-UAV collaboration improves the efficiency of the system and increases the chance of capturing the ball robustly in short span of time. In this paper, the proposed architecture is validated through simulation in ROS-Gazebo environment and is further implemented on hardware.
286 - Peize Sun , Jinkun Cao , Yi Jiang 2020
In this work, we propose TransTrack, a simple but efficient scheme to solve the multiple object tracking problems. TransTrack leverages the transformer architecture, which is an attention-based query-key mechanism. It applies object features from the previous frame as a query of the current frame and introduces a set of learned object queries to enable detecting new-coming objects. It builds up a novel joint-detection-and-tracking paradigm by accomplishing object detection and object association in a single shot, simplifying complicated multi-step settings in tracking-by-detection methods. On MOT17 and MOT20 benchmark, TransTrack achieves 74.5% and 64.5% MOTA, respectively, competitive to the state-of-the-art methods. We expect TransTrack to provide a novel perspective for multiple object tracking. The code is available at: url{https://github.com/PeizeSun/TransTrack}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا