ترغب بنشر مسار تعليمي؟ اضغط هنا

Shape from sound: toward new tools for quantum gravity

113   0   0.0 ( 0 )
 نشر من قبل David Aasen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators. As an immediate benefit, this would offer a clean gauge-independent identification of the metrics degrees of freedom in terms of invariants that should be ready to quantize. However, spectral geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral geometry into small finite-dimensional and therefore manageable steps. We constructively demonstrate that this strategy works at least in two dimensions. We can now calculate the shapes of 2-dimensional objects from their vibrational spectra.



قيم البحث

اقرأ أيضاً

A detailed Gitman-Lyakhovich-Tyutin analysis for higher-order topologically massive gravity is performed. The full structure of the constraints, the counting of physical degrees of freedom, and the Dirac algebra among the constraints are reported. Mo reover, our analysis presents a new structure of the constraints and we compare our results with those reported in the literature where a standard Ostrogradski framework was developed.
128 - Achim Kempf 2013
EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the study of quantum gravity.
The Lounesto classification splits spinors in six classes: I, II, III are those for which at least one among scalar and pseudo-scalar bi-linear spinor quantities is non-zero, its spinors are called regular, and among them we find the usual Dirac spin or. IV, V, VI are those for which the scalar and pseudo-scalar bi-linear spinor quantities are identically zero, its spinors are called singular, and they are split in further sub-classes: IV has no further restrictions, its spinors are called flag-dipole; V is the one for which the spin axial-vector vanishes, its spinors are called flagpole, and among them we find the Majorana spinor; VI is the one for which the momentum antisymmetric-tensor vanishes, its spinors are called dipole, and among them we find the Weyl spinor. In the quest for exact solutions of fully-coupled systems of spinor fields in their own gravity, we have already given examples in the case of Dirac fields and Weyl fields but never in the case of Majorana or more generally flagpole spinor fields. Flagpole spinor fields in interaction with their own gravitational field, in the case of axial symmetry, will be considered. Exact solutions of the field equations will be given.
The first mathematically consistent exact equations of quantum gravity in the Heisenberg representation and Hamilton gauge are obtained. It is shown that the path integral over the canonical variables in the Hamilton gauge is mathematically equivalen t to the operator equations of quantum theory of gravity with canonical rules of quantization of the gravitational and ghost fields. In its operator formulation, the theory can be used to calculate the graviton S-matrix as well as to describe the quantum evolution of macroscopic system of gravitons in the non-stationary Universe or in the vicinity of relativistic objects. In the S-matrix case, the standard results are obtained. For problems of the second type, the original Heisenberg equations of quantum gravity are converted to a self-consistent system of equations for the metric of the macroscopic spacetime and Heisenberg operators of quantum fields. It is shown that conditions of the compatibility and internal consistency of this system of equations are performed without restrictions on the amplitude and wavelength of gravitons and ghosts. The status of ghost fields in the various formulations of quantum theory of gravity is discussed.
We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese Cosmology models. As the action functional for gravity we consider the spectral actio n of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of a divergent sum which involves the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of the points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا