ﻻ يوجد ملخص باللغة العربية
A more accurate, stable, finite-difference time-domain (FDTD) algorithm is developed for simulating Maxwells equations with isotropic or anisotropic dielectric materials. This algorithm is in many cases more accurate than previous algorithms (G. R. Werner et. al., 2007; A. F. Oskooi et. al., 2009), and it remedies a defect that causes instability with high dielectric contrast (usually for epsilon{} significantly greater than 10) with either isotropic or anisotropic dielectrics. Ultimately this algorithm has first-order error (in the grid cell size) when the dielectric boundaries are sharp, due to field discontinuities at the dielectric interface. Accurate treatment of the discontinuities, in the limit of infinite wavelength, leads to an asymmetric, unstable update (C. A. Bauer et. al., 2011), but the symmetrized version of the latter is stable and more accurate than other FDTD methods. The convergence of field values supports the hypothesis that global first-order error can be achieved by second-order error in bulk material with zero-order error on the surface. This latter point is extremely important for any applications measuring surface fields.
We have developed a new fully anisotropic 3D FDTD Maxwell solver for arbitrary electrically and magnetically anisotropic media for piecewise constant electric and magnetic materials that are co-located over the primary computational cells. Two numeri
In a recent paper, Klaseboer et al. (IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 972-977, Feb. 2017) developed a surface integral formulation of electromagnetics that does not require working with integral equations that have singular kernels.
Following the recent development of a stable event-detection algorithm for hard-sphere systems, the implications of more complex interaction models are examined. The relative location of particles leads to ambiguity when it is used to determine the i
We compute the stable homotopy groups up to dimension 90, except for some carefully enumerated uncertainties.
We present a more accurate numerical scheme for the calculation of diffusive shock acceleration of cosmic rays using Stochastic Differential Equations. The accuracy of this scheme is demonstrated using a simple analytical flow profile that contains a