ترغب بنشر مسار تعليمي؟ اضغط هنا

On external shock model to explain the high-energy emission: GRB 940217, GRB 941017 and GRB 970217A

128   0   0.0 ( 0 )
 نشر من قبل Nissim Fraija
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a leptonic model on the external shock context to describe the high-energy emission of GRB 940217, GRB 941017 and GRB 970217A. We argue that the emission consists of two components, one with a similar duration of the burst, and a second, longer-lasting GeV phase lasting hundred of seconds after the prompt phase. Both components can be described as synchrotron self-Compton emission from a reverse and forward shock respectively. For the reverse shock, we analyze the synchrotron self-Compton in the thick-shell case. The calculated fluxes and break energies are all consistent with the observed values.



قيم البحث

اقرأ أيضاً

The complex multiwavelength emission of GRB afterglow 130427A (monitored in the radio up to 10 days, in the optical and X-ray until 50 days, and at GeV energies until 1 day) can be accounted for by a hybrid reverse-forward shock synchrotron model, wi th inverse-Compton emerging only above a few GeV. The high ratio of the early optical to late radio flux requires that the ambient medium is a wind and that the forward-shock synchrotron spectrum peaks in the optical at about 10 ks. The latter has two consequences: the wind must be very tenuous and the optical emission before 10 ks must arise from the reverse-shock, as suggested also by the bright optical flash that Raptor has monitored during the prompt emission phase (<100 s). The VLA radio emission is from the reverse-shock, the Swift X-ray emission is mostly from the forward-shock, but the both shocks give comparable contributions to the Fermi GeV emission. The weak wind implies a large blast-wave radius (8 t_{day}^{1/2} pc), which requires a very tenuous circumstellar medium, suggesting that the massive stellar progenitor of GRB 130427A resided in a super-bubble.
Long-lived high-energy (>100MeV) emission, a common feature of most Fermi-LAT detected gamma-ray burst, is detected up to sim 10^2 s in the short GRB 090510. We study the origin of this long-lived high-energy emission, using broad-band observations i ncluding X-ray and optical data. We confirm that the late > 100 MeV, X-ray and optical emission can be naturally explained via synchrotron emission from an adiabatic forward shock propagating into a homogeneous ambient medium with low number density. The Klein-Nishina effects are found to be significant, and effects due to jet spreading and magnetic field amplification in the shock appear to be required. Under the constraints from the low-energy observations, the adiabatic forward shock synchrotron emission is consistent with the later-time (t>2s) high-energy emission, but falls below the early-time (t < 2s) high energy emission. Thus we argue that an extra high energy component is needed at early times. A standard reverse shock origin is found to be inconsistent with this extra component. Therefore, we attribute the early part of the high-energy emission (t< 2s) to the prompt component, and the long-lived high energy emission (t>2s) to the adiabatic forward shock synchrotron afterglow radiation. This avoids the requirement for an extremely high initial Lorentz factor.
455 - E. Aliu , T. Aune , A. Barnacka 2014
Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, i t is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.
124 - Julia Schmid 2013
ANTARES is the largest high-energy neutrino telescope in the Northern Hemisphere. A search for neutrinos in coincidence with gamma-ray bursts using ANTARES data from late 2007 to 2011 is presented here. An extended maximum likelihood ratio search was employed to optimise the discovery potential for a neutrino signal as predicted by the numerical NeuCosmA model. No significant excess was found, so 90% confidence upper limits on the fluxes as expected from analytically approximated neutrino-emission models as well as on up-to-date numerical predictions were placed.
On 2015 March 23, VERITAS responded to a $Swift$-BAT detection of a gamma-ray burst, with observations beginning 270 seconds after the onset of BAT emission, and only 135 seconds after the main BAT emission peak. No statistically significant signal i s detected above 140 GeV. The VERITAS upper limit on the fluence in a 40 minute integration corresponds to about 1% of the prompt fluence. Our limit is particularly significant since the very-high-energy (VHE) observation started only $sim$2 minutes after the prompt emission peaked, and $Fermi$-LAT observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB~150323A ($z=0.593$) limits the attenuation by the extragalactic background light to $sim 50$ % at 100-200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below $sim100$ GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be $Agtrsim 3times 10^{11}$ g cm$^{-1}$, consistent with a standard Wolf-Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the ISM, which therefore cannot be ruled out as the environment of GRB 150323A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا