ﻻ يوجد ملخص باللغة العربية
We present a resonance Raman study of the disorder-induced D mode in a sample highly enriched with semiconducting (9,7) single-walled carbon nanotubes in the excitation energy range of 1.49 - 2.05 eV. The intensity of the D mode shows a resonance behavior near the optical transition of the (9,7) tube. The well-known dispersion of the D-mode frequency, on the other hand, is not observed at the resonance, but only above a certain excitation energy. We explain our results by numerical simulations of the D-mode spectra.
From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency and Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n_1,n_2)
Raman spectroscopy on carbon nanotubes (CNT) yields a rich variety of information owing to the close interplay between electronic and vibrational properties. In this paper, we review the properties of double wall carbon nanotubes (DWCNTs). In particu
We present a detailed comparison between theoretical predictions on electron scattering processes in metallic single-walled carbon nanotubes with defects and experimental data obtained by scanning tunneling spectroscopy of Ar$^+$ irradiated nanotubes
Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the p
While addition of electrolyte to sodium dodecyl sulfate suspensions of single-wall carbon nanotubes has been demonstrated to result in significant brightening of the nanotube photoluminescence (PL), the brightening mechanism has remained unresolved.