ترغب بنشر مسار تعليمي؟ اضغط هنا

Event Identification in $^3$He Proportional Counters Using Risetime Discrimination

161   0   0.0 ( 0 )
 نشر من قبل Thomas Langford
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a straightforward method for particle identification and background rejection in $^3$He proportional counters for use in neutron detection. By measuring the risetime and pulse height of the preamplifier signals, one may define a region in the risetime versus pulse height space where the events are predominately from neutron interactions. For six proportional counters surveyed in a low-background environment, we demonstrate the ability to reject alpha-particle events with an efficiency of 99%. By applying the same method, we also show an effective rejection of microdischarge noise events that, when passed through a shaping amplifier, are indistinguishable from physical events in the counters. The primary application of this method is in measurements where the signal-to-background for counting neutrons is very low, such as in underground laboratories.



قيم البحث

اقرأ أيضاً

We present the results of the measurements of the detection efficiency for a 4.7 r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45{deg}, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficiency will prove highly beneficial for large-area position-sensitive detectors for neutron scattering applications, for which the cost-effective manufacturing of the detector and associated readout electronics is an important objective. The proposed detector concept could be a technological option for one of the new chopper spectrometers and other instruments planned to be built at the future European Spallation Source in Sweden. These results with macrostructured cathodes generally apply not just to MWPCs but to other gaseous detectors as well.
Ambient neutrons may cause significant background for underground experiments. Therefore, it is necessary to investigate their flux and energy spectrum in order to devise a proper shielding. Here, two sets of altogether ten moderated $^3$He neutron c ounters are used for a detailed study of the ambient neutron background in tunnel IV of the Felsenkeller facility, underground below 45 meters of rock in Dresden/Germany. One of the moderators is lined with lead and thus sensitive to neutrons of energies higher than 10 MeV. For each $^3$He counter-moderator assembly, the energy dependent neutron sensitivity was calculated with the FLUKA code. The count rates of the ten detectors were then fitted with the MAXED and GRAVEL packages. As a result, both the neutron energy spectrum from 10$^{-9}$ MeV to 300 MeV and the flux integrated over the same energy range were determined experimentally. The data show that at a given depth, both the flux and the spectrum vary significantly depending on local conditions. Energy integrated fluxes of $(0.61 pm 0.05)$, $(1.96 pm 0.15)$, and $(4.6 pm 0.4) times 10^{-4}$ cm$^{-2}$ s$^{-1}$, respectively, are measured for three sites within Felsenkeller tunnel IV which have similar muon flux but different shielding wall configurations. The integrated neutron flux data and the obtained spectra for the three sites are matched reasonably well by FLUKA Monte Carlo calculations that are based on the known muon flux and composition of the measurement room walls.
148 - B. Beltran , H. Bichsel , B. Cai 2011
The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar n eutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNOs third-phase 8B solar-neutrino measurement.
Precise in-situ measurements of the neutron flux in underground laboratories is crucial for direct dark matter searches, as neutron induced backgrounds can mimic the typical dark matter signal. The development of a novel neutron spectroscopy techniqu e using Spherical Proportional Counters is investigated. The detector is operated with nitrogen and is sensitive to both fast and thermal neutrons through the $^{14}$N(n, $alpha$)$^{11}$B and $^{14}$N(n, p)$^{14}$C reactions. This method holds potential to be a safe, inexpensive, effective, and reliable alternative to $^3$He-based detectors. Measurements of fast and thermal neutrons from an Am-Be source with a Spherical Proportional Counter operated at pressures up to 2 bar at Birmingham are discussed.
The MAJORANA DEMONSTRATOR is searching for neutrinoless double-beta decay in 76Ge using arrays of point-contact germanium detectors operating at the Sanford Underground Research Facility. Background results in the neutrinoless double-beta decay regio n of interest from data taken during construction, commissioning, and the start of full operations have been recently published. A pulse shape analysis cut applied to achieve this result, named AvsE, is described in this paper. This cut is developed to remove events whose waveforms are typical of multi-site energy deposits while retaining (90 +/- 3.5)% of single-site events. This pulse shape discrimination is based on the relationship between the maximum current and energy, and tuned using 228Th calibration source data. The efficiency uncertainty accounts for variation across detectors, energy, and time, as well as for the position distribution difference between calibration and $0 ubetabeta$ events, established using simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا