ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Graphene Nanoribbons on Bunched Steps of a 6H-SiC(0001) Substrate: Aromatic Ring Pattern and Van Hove Singularities

173   0   0.0 ( 0 )
 نشر من قبل Abdelkarim Ouerghi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Ridene




اسأل ChatGPT حول البحث

We report scanning tunneling microscopy and spectroscopy investigation of graphene nanoribbons grown on an array of bunched steps of a 6H-SiC(0001) substrate. Our scanning tunneling microscopy images of a graphene nanoribbons on a step terrace feature a (sqrt(3)x sqrt(3))R30{deg} pattern of aromatic rings which define our armchair nanoribbons. This is in agreement to a simulation based on density functional theory. As another signature of the one-dimensional electronic structure, in the corresponding scanning tunneling spectroscopy spectra we find well developed, sharp Van Hove singularities.



قيم البحث

اقرأ أيضاً

168 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
154 - Zhi-Xin Guo , J. W. Ding , 2012
We study the effect of SiC substrate on thermal conductivity of epitaxial graphene nanoribbons (GNRs) using the nonequilibrium molecular dynamics method. We show that the substrate has strong interaction with single-layer GNRs during the thermal tran sport, which largely reduces the thermal conductivity. The thermal conductivity characteristics of suspended GNRs are well preserved in the second GNR layers of bilayer GNR, which has a weak van der Waals interaction with the underlying structures. The out-of-plane phonon mode is found to play a critical role on the thermal conductivity variation of the second GNR layer induced by the underlying structures.
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-a rea, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.
The early stages of epitaxial graphene layer growth on the Si-terminated 6H-SiC(0001) are investigated by Auger electron spectroscopy (AES) and depolarized Raman spectroscopy. The selection of the depolarized component of the scattered light results in a significant increase in the C-C bond signal over the second order SiC Raman signal, which allows to resolve submonolayer growth, including individual, localized C=C dimers in a diamond-like carbon matrix for AES C/Si ratio of $sim$3, and a strained graphene layer with delocalized electrons and Dirac single-band dispersion for AES C/Si ratio $>$6. The linear strain, measured at room temperature, is found to be compressive, which can be attributed to the large difference between the coefficients of thermal expansion of graphene and SiC. The magnitude of the compressive strain can be varied by adjusting the growth time at fixed annealing temperature.
Epitaxial graphene grown on SiC by the confinement controlled sublimation method is reviewed, with an emphasis on multilayer and monolayer epitaxial graphene on the carbon face of 4H-SiC and on directed and selectively grown structures under growth-a rresting or growth-enhancing masks. Recent developments in the growth of templated graphene nanostructures are also presented, as exemplified by tens of micron long very well confined and isolated 20-40nm wide graphene ribbons. Scheme for large scale integration of ribbon arrays with Si wafer is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا