ﻻ يوجد ملخص باللغة العربية
We derive conservative, multidimensional, energy-dependent moment equations for neutrino transport in core-collapse supernovae and related astrophysical systems, with particular attention to the consistency of conservative four-momentum and lepton number transport equations. After taking angular moments of conservative formulations of the general relativistic Boltzmann equation, we specialize to a conformally flat spacetime, which also serves as the basis for four further limits. Two of these---the multidimensional special relativistic case, and a conformally flat formulation of the spherically symmetric general relativistic case---are given in appendices for the sake of comparison with extant literature. The third limit is a weak-field, `pseudo-Newtonian approach citep{kim_etal_2009,kim_etal_2012} in which the source of the gravitational potential includes the trace of the stress-energy tensor (rather than just the mass density), and all orders in fluid velocity $v$ are retained. Our primary interest here is in the fourth limit: `$mathcal{O}(v)$ moment equations for use in conjunction with Newtonian self-gravitating hydrodynamics. We show that the concept of `$mathcal{O}(v)$ transport requires care when dealing with both conservative four-momentum and conservative lepton number transport, and present two self-consistent options: `$mathcal{O}(v)$-plus transport, in which an $mathcal{O}(v^2)$ energy equation combines with an $mathcal{O}(v)$ momentum equation to give an $mathcal{O}(v^2)$ number equation; and `$mathcal{O}(v)$-minus transport, in which an $mathcal{O}(v)$ energy equation combines with an $mathcal{O}(1)$ momentum equation to give an $mathcal{O}(v)$ number equation.
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy t
Neutrino-matter interactions play an important role in core-collapse supernova (CCSN) explosions as they contribute to both lepton number and/or four-momentum exchange between neutrinos and matter, and thus act as the agent for neutrino-driven explos
We analyze the mixed frame equations of radiation hydrodynamics under the approximations of flux-limited diffusion and a thermal radiation field, and derive the minimal set of evolution equations that includes all terms that are of leading order in a
We develop a neutrino transfer code for core-collapse simulations, that directly solves the multidimensional Boltzmann equations in full general relativity. We employ the discrete ordinate method, which discretizes the six dimensional phase space. Th