ﻻ يوجد ملخص باللغة العربية
Hyper-Raman scattering experiments allowed collecting the spectra of the lowest F1u-symmetry mode of PbTiO3 crystal in the paraelectric phase up to 930K as well as down to about 1K above the phase transition. It is realized that this mode is fully responsible for the Curie-Weiss behavior of its dielectric permittivity above Tc. Near the phase transition, this phonon frequency softens down to 17 cm-1 and its spectrum can be well modeled as a response of a single damped harmonic oscillator. It is concluded that PbTiO3 constitutes a clean example of a soft mode-driven ferroelectric system.
Polarized Raman, IR and time-domain THz spectroscopy of orthorhombic lead zirconate single crystals yielded a comprehensive picture of temperature-dependent quasiharmonic frequencies of its low-frequency phonon modes. It is argued that these modes pr
Ultrasonic velocity measurements on the magnetoelectric multiferroic compound CuFeO2 reveal that the antiferromagnetic transition observed at TN1 = 14 K might be induced by an R-3m -> C2/m pseudoproper ferroelastic transition (G. Quirion, M. J. Tagor
Polarized Raman scattering measurements have been performed on Na0.5CoO2 single crystal from 8 to 305 K. Both the A1g and E1g phonon modes show a softening below Tc1 ~ 83 K. Additionally, the A1g phonon mode, which is forbidden in the scattering geom
The temperature dependence of elastic, dielectric, and piezoelectric properties of (65-x)Pb(Mg1/3Nb2/3)O3-xBaTiO335-PbTiO3 ceramics with x=0, 1, 2, 3, and 4 was investigated. Compound with x=2 was found to exhibit a large piezoelectric response (d31=
The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some