ترغب بنشر مسار تعليمي؟ اضغط هنا

The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function

287   0   0.0 ( 0 )
 نشر من قبل Maryam Habibi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galactic center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and Delta AKs ~ 1 magnitude in acquired Ks-band extinction, while the present-day mass function slope changes by ~ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law increases from a flat slope of alpha_{Nishi}=-1.50 pm0.35 in the core (r<0.2 pc) to alpha_{Nishi}=-2.21 pm0.27 in the intermediate annulus (0.2 <r<0.4 pc), where the Salpeter slope is -2.3. The mass function steepens to alpha_{Nishi}=-3.21 pm0.30 in the outer annulus (0.4<r<1.5 pc), indicating that the outer cluster region is depleted of high-mass stars. This picture is consistent with mass segregation owing to the dynamical evolution of the cluster.



قيم البحث

اقرأ أيضاً

Westerlund 1 is the most important starburst cluster in the Galaxy due to its massive star content. We have performed BVIc and JKs photometry to investigate the initial mass function (IMF). By comparing the observed color with the spectral type - int rinsic color relation, we obtain the mean interstellar reddening of <E(B-V)>=4.19+/-0.23 and <E(J-Ks)>=1.70+/-0.21. Due to the heavy extinction toward the cluster, the zero-age main sequence fitting method based on optical photometry proved to be inappropriate for the distance determination, while the near-infrared photometry gave a reliable distance to the cluster -- 3.8 kpc from the empirical relation. Using the recent theoretical stellar evolution models with rotation, the age of the cluster is estimated to be 5.0+/-1.0 Myr. We derived the IMF in the massive part and obtained a fairly shallow slope of {Gamma} = -0.8 +/- 0.1. The integration of the IMF gave a total mass for the cluster in excess of 5.0 x 10^4 solar mass. The IMF shows a clear radial variation indicating the presence of mass segregation. We also discuss the possible star formation history of Westerlund 1 from the presence of red supergiants and relatively low-luminosity yellow hypergiants.
We investigate the time evolution of the mass distribution of pre-stellar cores (PSCs) and their transition to the initial stellar mass function (IMF) in the central parts of a molecular cloud (MC) under the assumption that the coalescence of cores i s important. Our aim is to explain the observed shallow IMF in dense stellar clusters such as the Arches cluster. The initial distributions of PSCs at various distances from the MC center are those of gravitationally unstable cores resulting from the gravo-turbulent fragmentation of the MC. As time evolves, there is a competition between the PSCs rates of coalescence and collapse. Whenever the local rate of collapse is larger than the rate of coalescence in a given mass bin, cores are collapsed into stars. With appropriate parameters, we find that the coalescence-collapse model reproduces very well all the observed characteristics of the Arches stellar cluster IMF; Namely, the slopes at high and low mass ends and the peculiar bump observed at ~5-6 M_sol. Our results suggest that todays IMF of the Arches cluster is very similar to the primordial one and is prior to the dynamical effects of mass segregation becoming important
We study the dynamical evolution of the young star cluster Arches and its dependence on the assumed initial stellar mass function (IMF). We perform many direct $N$-body simulations with various initial conditions and two different choices of IMFs. On e is a standard Kroupa IMF without any mass segregation. The other is a radially dependent IMF, as presently observed in the Arches. We find that it is unlikely for the Arches to have attained the observed degree of mass segregation at its current age starting from a standard non-segregated Kroupa IMF. We also study the possibility of a collisional runaway developing in the first $sim 2-3 rm{Myr}$ of dynamical evolution. We find that the evolution of this cluster is dramatically different depending on the choice of IMF: if a primordially mass segregated IMF is chosen, a collisional runaway should always occur between $2-3 rm{Myr}$ for a broad range of initial concentrations. In contrast, for a standard Kroupa IMF no collisional runaway is predicted. We argue that if Arches was created with a mass segregated IMF similar to what is observed today then at the current cluster age a very unusual, high-mass star should be created. However, whether a collisional runaway leads to the formation of an intermediate-mass black hole (IMBH) depends strongly on the mass loss rate via winds from massive stars. Growth of stellar mass through collisions can be quenched by strong wind mass loss. In that case, the inter-cluster as well as intra-cluster medium are expected to have a significant Helium enrichment which may be observed via Helium recombination lines. The excess amount of gas lost in winds may also be observed via X-ray observations as diffused X-ray sources.
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain h igh-precision proper motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to 1.8 M$_{odot}$ between cluster radii of 0.25 pc -- 3.0 pc. We achieve a cluster sample with just ~8% field contamination, a significant improvement over photometrically-selected samples which are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of 5 cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a 1-segment power law that is significantly top-heavy: $alpha$ = 1.80 $pm$ 0.05 (stat) $pm$ 0.06 (sys), where dN/dm $propto$ m$^{-alpha}$, though we cannot discount a 2-segment power law model with a high-mass slope only slightly shallower than local star forming regions ($alpha$ = 2.04$^{+0.14}_{-0.19}$ $pm$ 0.04) but with a break at 5.8$^{+3.2}_{-1.2}$ $pm$ 0.02 M$_{odot}$. In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic Center.
Classical theories for the stellar initial mass function (IMF) predict a peak mass which scales with the properties of the molecular cloud. In this work, we explore a new theory proposed by Lee & Hennebelle (2018). The idea is that the tidal field ar ound first Larson cores prevents the formation of other collapsing clumps within a certain radius. The protostar can then freely accrete the gas within this radius. This leads to a peak mass of roughly $10 , M_{mathrm{1LC}}$, independent of the parent cloud properties. Using simple analytical arguments, we derive a collapse condition for clumps located close to a protostar. We then study the tidal field and the corresponding collapse condition using a series of numerical simulations. We find that the tidal field around protostars is indeed strong enough to prevent clumps from collapsing unless they have high enough densities. For each newly formed protostar, we determine the region in which tidal screening is dominant. We call this the tidal bubble. The mass within this bubble is our estimate for the final mass of the star. Using this formalism, we are able to construct a very good prediction for the final IMF in our simulations. Not only do we correctly predict the peak, but we are also able to reproduced the high and low mass end of the IMF. We conclude that tidal forces are important in determining the final mass of a star and might be the dominant effect in setting the peak mass of the IMF.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا