ﻻ يوجد ملخص باللغة العربية
We aimed to assess the accuracy of the Gaia teff and logg estimates as derived with current models and observations. We assessed the validity of several inference techniques for deriving the physical parameters of ultra-cool dwarf stars. We used synthetic spectra derived from ultra-cool dwarf models to construct (train) the regression models. We derived the intrinsic uncertainties of the best inference models and assessed their validity by comparing the estimated parameters with the values derived in the bibliography for a sample of ultra-cool dwarf stars observed from the ground. We estimated the total number of ultra-cool dwarfs per spectral subtype, and obtained values that can be summarised (in orders of magnitude) as 400000 objects in the M5-L0 range, 600 objects between L0 and L5, 30 objects between L5 and T0, and 10 objects between T0 and T8. A bright ultra-cool dwarf (with teff=2500 K and logg=3.5 will be detected by Gaia out to approximately 220 pc, while for teff=1500 K (spectral type L5) and the same surface gravity, this maximum distance reduces to 10-20 pc. The RMSE of the prediction deduced from ground-based spectra of ultra-cool dwarfs simulated at the Gaia spectral range and resolution, and for a Gaia magnitude G=20 is 213 K and 266 K for the models based on k-nearest neighbours and Gaussian process regression, respectively. These are total errors in the sense that they include the internal and external errors, with the latter caused by the inability of the synthetic spectral models (used for the construction of the regression models) to exactly reproduce the observed spectra, and by the large uncertainties in the current calibrations of spectral types and effective temperatures.
Locating ultra-cool companions to M dwarfs is important for constraining low-mass formation models, the measurement of sub-stellar dynamical masses and radii, and for testing ultra-cool evolutionary models. We present an optimised method for identify
The current and planned high-resolution, high-multiplexity stellar spectroscopic surveys, as well as the swelling amount of under-utilized data present in public archives have led to an increasing number of efforts to automate the crucial but slow pr
We present criteria for the photometric selection of M-dwarfs using all-sky photometry, with a view to identifying M-dwarf candidates for inclusion in the input catalogues of upcoming all-sky surveys, including TESS and FunnelWeb. The criteria are ba
The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative sampl
We present ten new ultra-cool dwarfs in seven wide binary systems discovered using $textit{Gaia}$ DR2 data, identified as part of our $textit{Gaia}$ Ultra-Cool Dwarf Sample project. The seven systems presented here include an L1 companion to the G5 I