An emerging area in condensed matter physics is the use of multilayered heterostructures to enhance ferroelectricity in complex oxides. Here, we demonstrate that optically pumping carriers across the interface between thin films of a ferroelectric (FE) insulator and a ferromagnetic metal can significantly enhance the FE polarization. The photoinduced FE state remains stable at low temperatures for over one day. This occurs through screening of the internal electric field by the photoexcited carriers, leading to a larger, more stable polarization state that may be suitable for applications in areas such as data and energy storage.