ﻻ يوجد ملخص باللغة العربية
Recently de La Torre et al. [1] reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of an entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that such universality would not be sufficient for the result, whereas local discriminability and the qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a byproduct we also provide a short proof of universality of C-NOT for CQT.
I propose a new class of interpretations, {it real world interpretations}, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They g
This paper establishes the applicability of density functional theory methods to quantum computing systems. We show that ground-state and time-dependent density functional theory can be applied to quantum computing systems by proving the Hohenberg-Ko
We propose a hybrid quantum computing scheme where qubit degrees of freedom for computation are combined with quantum continuous variables for communication. In particular, universal two-qubit gates can be implemented deterministically through qubit-
One of the primary motivations of the research in the field of computation is to optimize the cost of computation. The major ingredient that a computer needs is the energy to run a process, i.e., the thermodynamic cost. The analysis of the thermodyna
In this thesis, I investigate aspects of local Hamiltonians in quantum computing. First, I focus on the Adiabatic Quantum Computing model, based on evolution with a time dependent Hamiltonian. I show that to succeed using AQC, the Hamiltonian involve