ترغب بنشر مسار تعليمي؟ اضغط هنا

First Measurement of the Neutral Current Excitation of the Delta Resonance on a Proton Target

140   0   0.0 ( 0 )
 نشر من قبل David S. Armstrong
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The parity-violating asymmetry arising from inelastic electron-nucleon scattering at backward angle (~95 degrees) near the Delta(1232) resonance has been measured using a hydrogen target. From this asymmetry, we extracted the axial transition form factor G^A_{NDelta}, a function of the axial Adler form factors C^A_i. Though G^A_{NDelta} has been previously studied using charged current reactions, this is the first measurement of the weak neutral current excitation of the Delta using a proton target. For Q^2 = 0.34 (GeV/c)^2 and W = 1.18 GeV, the asymmetry was measured to be -33.4 pm (5.3)_{stat} pm (5.1)_{sys} ppm. The value of G^A_{NDelta} determined from the hydrogen asymmetry was -0.05 pm (0.35)_{stat} pm (0.34)_{sys} pm (0.06)_{theory}. These findings agree within errors with theoretical predictions for both the total asymmetry and the form factor. In addition to the hydrogen measurement, the asymmetry was measured at the same kinematics using a deuterium target. The asymmetry for deuterium was determined to be -43.6 pm (14.6)_{stat} pm (6.2)_{sys} ppm.



قيم البحث

اقرأ أيضاً

Exclusive measurements of the $pp to pppi^0pi^0$ reaction have been performed at CELSIUS/WASA at energies from threshold up to $T_p$ = 1.3 GeV. Total and differential cross sections have been obtained. Here we concentrate on energies $T_p ge$ 1 GeV, where the $DeltaDelta$ excitation becomes the leading process. No evidence is found for a significant ABC effect beyond that given by the conventional $t$-channel $DeltaDelta$ excitation. This holds also for the double-pionic fusion to the quasibound $^2$He. The data are compared to model predictions, which are based on both pion and $rho$ exchange. Total and differential cross sections are at variance with these predictions and call for a profound modification of the $rho$-exchange. A phenomenological modification allowing only a small $rho$ exchange contribution leads to a quantitative description of the data.
Results are presented for the first measurement of the double-polarization helicity asymmetry E for the $eta$ photoproduction reaction $gamma p rightarrow eta p$. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in H all B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the Julich model to examine the case for the existence of a narrow $N^*$ resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the E observable using that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances.
We report a measurement of the $pi^-$ photoproduction beam asymmetry for the reaction $vec{gamma} p rightarrow pi^- Delta^{++}$ using data from the GlueX experiment in the photon beam energy range 8.2--8.8 GeV. The asymmetry $Sigma$ is measured as a function of four-momentum transfer $t$ to the $Delta^{++}$ and compared to phenomenological models. We find that $Sigma$ varies as a function of $t$: negative at smaller values and positive at higher values of $|t|$. The reaction can be described theoretically by $t$-channel particle exchange requiring pseudoscalar, vector, and tensor intermediaries. In particular, this reaction requires charge exchange, allowing us to probe pion exchange and the significance of higher-order corrections to one-pion exchange at low momentum transfer. Constraining production mechanisms of conventional mesons may aid in the search for and study of unconventional mesons. This is the first measurement of the process at this energy.
This paper reports the first differential measurement of the charged-current interaction cross section of $ u_{mu}$ on water with no pions in the final state. This flux-averaged measurement has been made using the T2K experiments off-axis near detect or, and is reported in doubly-differential bins of muon momentum and angle. The flux-averaged total cross section in a restricted region of phase space was found to be $ sigma= (0.95 pm 0.08 (mbox{stat}) pm 0.06 (mbox{det. syst.}) pm 0.04(mbox{model syst.}) pm{} 0.08(mbox{flux}) ) times 10^{-38} mbox{cm}^2$ per n.
The first data on target and beam-target asymmetries for the $gamma ptopi^0eta p$ reaction at photon energies from 1050 up to 1450 MeV are presented. The measurements were performed using the Crystal Ball and TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. The general assumption that the reaction is dominated by the $Delta 3/2^-$ amplitude is confirmed. The data are in particular sensitive to small contributions from other partial waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا