ﻻ يوجد ملخص باللغة العربية
MASSIV (Mass Assembly Survey with SINFONI in VVDS) is a sample of 84 distant star-forming galaxies observed with the SINFONI Integral Field Unit (IFU) on the VLT. These galaxies are selected inside a redshift range of 0.8 < z < 1.9, i.e. where they are between 3 and 5 billion years old. The sample aims to probe the dynamical and chemical abundances properties of representative galaxies of this cosmological era. On the one hand, close environment study shows that about a third of the sample is involved in major mergers. On the other hand, kinematical analysis revealed that 42% of the sample is rotating disks, in accordance with higher redshift samples. The remaining 58% show complex kinematics, suggesting a dynamical support based on dispersion, and about half of these galaxies is involved in major mergers. Spheroids, unrelaxed merger remnants, or extremely turbulent disks might be an explanation for such a behavior. Furthermore, the spatially resolved metallicity analysis reveals positive gradients, adding a piece to the puzzle of galaxies evolution scenarios.
Understanding the different mechanisms of galaxy assembly at various cosmic epochs is a key issue for galaxy evolution and formation models. We present MASSIV (Mass Assembly Survey with SINFONI in VVDS) in this context, an on-going survey with VLT/SI
How mass assembly occurs in galaxies and which process(es) contribute to this activity are among the most highly debated questions in galaxy formation theories. This has motivated our survey MASSIV of 0.9<z<1.9 star-forming galaxies selected from the
A key open issue for galaxy evolution and formation models is the understanding of the different mechanisms of galaxy assembly at various cosmic epochs. The aim of this study is to derive the global and spatially-resolved metal content in high-redshi
(Abridged) Processes driving mass assembly are expected to evolve on different timescales along cosmic time. A transition might happen around z ~ 1 as the cosmic star formation rate starts its decrease. Identifying the dynamical nature of galaxies on
We aim to measure the major merger rate of star-forming galaxies at 0.9 < z <1.8, using close pairs identified from integral field spectroscopy (IFS). We use the velocity field maps obtained with SINFONI/VLT on the MASSIV sample, selected from the st