ﻻ يوجد ملخص باللغة العربية
Global three dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when non-linear motions - perhaps triggered by the onset of turbulence - upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure, <alpha_{rm P}> = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scaleheight (in the vertical direction).
Magnetorotational turbulence provides a viable mechanism for angular momentum transport in accretion disks. We present global, three dimensional (3D), MHD accretion disk simulations that investigate the dependence of the turbulent stresses on resolut
We use global magnetohydrodynamic simulations to study the influence of net vertical magnetic fields on the structure of geometrically thin ($H/r approx 0.05$) accretion disks in the Newtonian limit. We consider initial mid-plane gas to magnetic pres
In this paper we consider two outstanding intertwined problems in modern high-energy astrophysics: (1) the vertical thermal structure of an optically thick accretion disk heated by the dissipation of magnetohydrodynamic (MHD) turbulence driven by the
It is widely accepted that quasars and other active galactic nuclei (AGN) are powered by accretion of matter onto a central supermassive black hole. While numerical simulations have demonstrated the importance of magnetic fields in generating the tur
In the course of its evolution, a black hole (BH) accretes gas from a wide range of directions. Given a random accretion event, the typical angular momentum of an accretion disc would be tilted by $sim$60$^circ$ relative to the BH spin. Misalignment