ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalously fast kinetics of lipid monolayer buckling

334   0   0.0 ( 0 )
 نشر من قبل Naomi Oppenheimer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We re-examine previous observations of folding kinetics of compressed lipid monolayers in light of the accepted mechanical buckling mechanism recently proposed [L. Pocivavsek et al., Soft Matter, 2008, 4, 2019]. Using simple models, we set conservative limits on a) the energy released in the mechanical buckling process and b) the kinetic energy entailed by the observed folding motion. These limits imply a kinetic energy at least thirty times greater than the energy supplied by the buckling instability. We discuss possible extensions of the accepted picture that might resolve this discrepancy.



قيم البحث

اقرأ أيضاً

As 2D materials such as graphene, transition metal dichalcogenides, and 2D polymers become more prevalent, solution processing and colloidal-state properties are being exploited to create advanced and functional materials. However, our understanding of the fundamental behavior of 2D sheets and membranes in fluid flow is still lacking. In this work, we perform numerical simulations of athermal semiflexible sheets with hydrodynamic interactions in shear flow. For sheets initially oriented in the flow-gradient plane, we find buckling instabilities of different mode numbers that vary with bending stiffness and can be understood with a quasi-static model of elasticity. For different initial orientations, chaotic tumbling trajectories are observed. Notably, we find that sheets fold or crumple before tumbling but do not stretch again upon applying greater shear.
78 - Purbarun Dhar 2020
This article explores the governing role of the internal hydrodynamics and advective transport within sessile colloidal droplets on the self assembly of nanostructures to form floral patterns. Water acetone binary fluid and Bi2O3 nanoflakes based com plex fluids are experimented with. Microliter sessile droplets are allowed to vaporize and the dry out patterns are examined using scanning electron microscopy. The presence of distributed self assembled rose like structures is observed. The population density, structure and shape of the floral structures are noted to be dependent on the binary fluid composition and nanomaterial concentration. Detailed microscopic particle image velocimetry analysis is undertaken to qualitatively and quantitatively describe the solutal Marangoni advection within the evaporating droplets. It has been shown that the kinetics, regime and location of the internal advection are responsible factors towards the hydrodynamics influenced clustering, aggregation and self-assembly of the nanoflakes. In addition, the size of the nanostructures and the complex fluids.
Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes. Although its behavior seems deceivingly simple, recent studies showing passive superdiffusive transport suggest diffusion on surfaces may hide rich compl exities. In particular, bulk-mediated diffusion occurs when molecules are transiently released from the surface to perform three-dimensional excursions into the liquid bulk. This phenomenon bears the dichotomy where a molecule always return to the surface but the mean jump length is infinite. Such behavior is associated with a breakdown of the central limit theorem and weak ergodicity breaking. Here, we use single-particle tracking to study the statistics of bulk-mediated diffusion on a supported lipid bilayer. We find that the time-averaged mean square displacement (MSD) of individual trajectories, the archetypal measure in diffusion processes, does not converge to the ensemble MSD but it remains a random variable, even in the long observation-time limit. The distribution of time averages is shown to agree with a L{e}vy flight model. Our results also unravel intriguing anomalies in the statistics of displacements. The time averaged MSD is shown to depend on experimental time and investigations of fractional moments show a scaling $langle |r(t)|^qrangle sim t^{q u(q)}$ with non-linear exponents, i.e. $ u(q) eqtextrm{const}$. This type of behavior is termed strong anomalous diffusion and is rare among experimental observations.
The dynamics of a triangular magnetocapillary swimmer is studied using the lattice Boltzmann method. Performing extensive numerical simulations taking into account the coupled dynamics of the fluid-fluid interface and of magnetic particles floating o n it and driven by external magnetic fields we identify several regimes of the swimmer motion. In the regime of high frequencies the swimmers maximum velocity is centered around the particles inverse coasting time. Modifying the ratio of surface tension and magnetic forces allows to study the swimmer propagation in the regime of significantly lower frequencies mainly defined by the strength of the magnetocapillary potential. Finally, introducing a constant magnetic contribution in each of the particles in addition to their magnetic moment induced by external fields leads to another regime characterised by strong in-plane swimmer reorientations that resemble experimental observations.
The ordering of particles in the drying process of a colloidal suspension is crucial in determining the properties of the resulting film. For example, microscopic inhomogeneities can lead to the formation of cracks and defects that can deteriorate th e quality of the film considerably. This type of problem is inherently multiscale and here we study it numerically, using our recently developed method for the simulation of soft polymeric capsules in multicomponent fluids. We focus on the effect of the particle softness on the film microstructure during the drying phase and how it relates to the formation of defects. We quantify the order of the particles by measuring both the Voronoi entropy and the isotropic order parameter. Surprisingly, both observables exhibit a non-monotonic behaviour when the softness of the particles is increased. We further investigate the correlation between the interparticle interaction and the change in the microstructure during the evaporation phase. We observe that the rigid particles form chain-like structures that tend to scatter into small clusters when the particle softness is increased.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا