ﻻ يوجد ملخص باللغة العربية
Recent research in areas such as SAT solving and Integer Linear Programming has shown that the performances of a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. We report an empirical evaluation and comparison of portfolio approaches applied to Constraint Satisfaction Problems (CSPs). We compared models developed on top of off-the-shelf machine learning algorithms with respect to approaches used in the SAT field and adapted for CSPs, considering different portfolio sizes and using as evaluation metrics the number of solved problems and the time taken to solve them. Results indicate that the best SAT approaches have top performances also in the CSP field and are slightly more competitive than simple models built on top of classification algorithms.
The true online TD({lambda}) algorithm has recently been proposed (van Seijen and Sutton, 2014) as a universal replacement for the popular TD({lambda}) algorithm, in temporal-difference learning and reinforcement learning. True online TD({lambda}) ha
Predicting the outcomes of future events is a challenging problem for which a variety of solution methods have been explored and attempted. We present an empirical comparison of a variety of online and offline adaptive algorithms for aggregating expe
Finding a good query plan is key to the optimization of query runtime. This holds in particular for cost-based federation engines, which make use of cardinality estimations to achieve this goal. A number of studies compare SPARQL federation engines a
Traditional Reinforcement Learning (RL) problems depend on an exhaustive simulation environment that models real-world physics of the problem and trains the RL agent by observing this environment. In this paper, we present a novel approach to creatin
The manpower scheduling problem is a critical research field in the resource management area. Based on the existing studies on scheduling problem solutions, this paper transforms the manpower scheduling problem into a combinational optimization probl