ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavour violating squark and gluino decays at LHC

145   0   0.0 ( 0 )
 نشر من قبل Keisho Hidaka
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف K. Hidaka




اسأل ChatGPT حول البحث

We study the effects of squark generation mixing on squark and gluino production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM) with focus on the mixing between second and third generation squarks. Taking into account the constraints from B-physics experiments we show that various regions in parameter space exist where decays of squarks and/or gluinos into quark flavour violating (QFV) final states can have large branching ratios. Here we consider both fermionic and bosonic decays of squarks. Rates of the corresponding QFV signals, e.g. pp -> t t bar{c} bar{c} missing-E_T X, can be significant at LHC(14 TeV). We find that the inclusion of flavour mixing effects can be important for the search of squarks and gluinos and the determination of the underlying model parameters of the MSSM at LHC.



قيم البحث

اقرأ أيضاً

131 - K. Hidaka 2013
Quark flavour conserving (QFC) fermionic squark decays, such as ~t_{1,2} -> t neutralino_i, are usually assumed in squark search analyses. Here we study quark flavour violating (QFV) bosonic squark decays, such as ~u_2 -> ~u_1 h^0/Z^0, where the mass eigenstates ~u_{1,2} are mixtures of scharm and stop quarks. We show that the branching ratios of such QFV decays can be very large due to sizable ~c_R - ~t_{R/L} and ~t_R - ~t_L mixing effects despite the very strong constraints on the QFV parameters from B meson data. This can result in remarkable QFV signatures with significant rates at LHC (14 TeV), such as pp -> gluino gluino X -> t c bar{c} bar{c} h^0/Z^0 missing-E_T X and pp -> gluino gluino X -> t t bar{c} bar{c} h^0/Z^0 missing-E_T X. The QFV bosonic squark decays can play an important role in the squark and gluino searches at LHC (14 TeV).
257 - H. Eberl , A. Bartl , B. Herrmann 2011
We study the effect of squark generation mixing on squark production and decays at the LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark flavour violation ( QFV) from experimental data on B mesons. We find that the two lightest up-type squarks ${tilde u}_{1,2}$ can have large branching ratios for the decays into $c {tildechi_1^0}$ and $t {tildechi_1^0}$ at the same time, leading to QFV signals $p p to c bar t, (t bar c)$ + missing-$E_T$ + $X$ with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.
138 - P. Falgari 2012
We present predictions of the total cross sections for pair production of squarks and gluinos at the LHC, including the stop-antistop production process. Our calculation supplements full fixed-order NLO predictions with resummation of threshold logar ithms and Coulomb singularities at next-to-leading logarithmic (NLL) accuracy, including bound-state effects. The numerical effect of higher-order Coulomb terms can be as big or larger than that of soft-gluon corrections. For a selection of benchmark points accessible with data from the 2010-2012 LHC runs, resummation leads to an enhancement of the total inclusive squark and gluino production cross section in the 15-30 % range. For individual production processes of gluinos, the corrections can be much larger. The theoretical uncertainty in the prediction of the hard-scattering cross sections is typically reduced to the 10 % level.
We present predictions for the total cross sections for pair production of squarks and gluinos at the LHC including a combined NNLL resummation of soft and Coulomb gluon effects. We derive all terms in the NNLO cross section that are enhanced near th e production threshold, which include contributions from spin-dependent potentials and so-called annihilation corrections. The NNLL corrections at $sqrt{s}=13$ TeV range from up to $20%$ for squark-squark production to $90%$ for gluino pair production relative to the NLO results and reduce the theoretical uncertainties of the perturbative calculation to the $10%$ level. Grid files with our numerical results are publicly available.
We perform the resummation of soft-gluon emissions for squark and gluino production at next- to-next-to-leading-logarithmic (NNLL) accuracy. We include also the one-loop hard matching coefficients as well as Coulomb corrections to second order, using Mellin-moment methods. We study the characteristics of this resummation in detail for a centre-of-mass (CM) energy of 8 TeV at the LHC, and for squark and gluino masses up to 2.5 TeV. We find significant enhancing effects for all four processes of squark- and gluino-pair production. Scale dependence is generally reduced compared to NLL resummation, except for gluino-pair production where we find a moderate enhancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا