ﻻ يوجد ملخص باللغة العربية
The local magnetic moment of Ti:ZnO is calculated from first principles by using the corrected-band-gap scheme (CBGS). The results shows that the system is magnetic with the magnetization of 0.699 $mu_B$ per dopant. The origin of the local magnetic moment is considered to be the impurity band partially occupied by the donor electrons in the conduction band. Further, the impacts of applying Hubbard U to Ti-d orbital on the magnetic moment have been investigated.
Based on first-principles calculation, it has been predicted that the magnetic anisotropy energy (MAE) in Co-doped ZnO (Co:ZnO) depends on electron-filling. Results show that the charge neutral Co:ZnO presents a easy plane magnetic state. While modif
A modified core-to-valence band maximum approach is applied to calculate band offsets of strained III/V semiconductor hetero junctions. The method is used for the analysis of (In,Ga)As/GaAs/Ga(As,Sb) multi-quantum well structures. The obtained offset
The correct calculation of formation enthalpy is one of the enablers of ab-initio computational materials design. For several classes of systems (e.g. oxides) standard density functional theory produces incorrect values. Here we propose the Coordinat
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The root o
Here we report the synthesis of a bulk oxide diluted magnetic semiconductor (DMS) system La1-xSrxCu0.925Mn0.075SO (x=0, 0.025, 0.05, 0.075, and 0.1). As a wide band gap p-type oxide semiconductor, LaCuSO satisfies all the conditions forecasted theore