ﻻ يوجد ملخص باللغة العربية
We revisit the dividend payment problem in the dual model of Avanzi et al. ([2], [1], and [3]). Using the fluctuation theory of spectrally positive L{e}vy processes, we give a short exposition in which we show the optimality of barrier strategies for all such L{e}vy processes. Moreover, we characterize the optimal barrier using the functional inverse of a scale function. We also consider the capital injection problem of [3] and show that its value function has a very similar form to the one in which the horizon is the time of ruin.
We analyze the optimal dividend payment problem in the dual model under constant transaction costs. We show, for a general spectrally positive L{e}vy process, an optimal strategy is given by a $(c_1,c_2)$-policy that brings the surplus process down t
We consider a dual risk model with constant expense rate and i.i.d. exponentially distributed gains $C_i$ ($i=1,2,dots$) that arrive according to a renewal process with general interarrival times. We add to this classical dual risk model the proporti
In Liang et al (2009), the current authors demonstrated that BSDEs can be reformulated as functional differential equations, and as an application, they solved BSDEs on general filtered probability spaces. In this paper the authors continue the study
In a general semimartingale financial model, we study the stability of the No Arbitrage of the First Kind (NA1) (or, equivalently, No Unbounded Profit with Bounded Risk) condition under initial and under progressive filtration enlargements. In both c
In this article we study and classify optimal martingales in the dual formulation of optimal stopping problems. In this respect we distinguish between weakly optimal and surely optimal martingales. It is shown that the family of weakly optimal and su