ترغب بنشر مسار تعليمي؟ اضغط هنا

Feynman-Kac particle integration with geometric interacting jumps

144   0   0.0 ( 0 )
 نشر من قبل Pierre E. Jacob
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Pierre Del Moral




اسأل ChatGPT حول البحث

This article is concerned with the design and analysis of discrete time Feynman-Kac particle integration models with geometric interacting jump processes. We analyze two general types of model, corresponding to whether the reference process is in continuous or discrete time. For the former, we consider discrete generation particle models defined by arbitrarily fine time mesh approximations of the Feynman-Kac models with continuous time path integrals. For the latter, we assume that the discrete process is observed at integer times and we design new approximation models with geometric interacting jumps in terms of a sequence of intermediate time steps between the integers. In both situations, we provide non asymptotic bias and variance theorems w.r.t. the time step and the size of the system, yielding what appear to be the first results of this type for this class of Feynman-Kac particle integration models. We also discuss uniform convergence estimates w.r.t. the time horizon. Our approach is based on an original semigroup analysis with first order decompositions of the fluctuation errors.



قيم البحث

اقرأ أيضاً

Possible reasons for the uniqueness of the positive geometric law in the context of stability of random extremes are explored here culminating in a conjecture characterizing the geometric law. Our reasoning comes closer in justifying the geometric la w in similar contexts discussed in Arnold et al. (1986) and Marshall & Olkin (1997) and also supplement their arguments.
In this paper we investigate BSDEs where the driver contains a distributional term (in the sense of generalised functions) and derive general Feynman-Kac formulae related to these BSDEs. We introduce an integral operator to give sense to the equation and then we show the existence of a strong solution employing results on a related PDE.Due to the irregularity of the driver, the $Y$-component of a couple $(Y,Z)$ solving the BSDE is not necessarily a semimartingale but a weak Dirichlet process.
317 - Xinjia Chen 2015
We propose a geometric approach for bounding average stopping times for stopped random walks in discrete and continuous time. We consider stopping times in the hyperspace of time indexes and stochastic processes. Our techniques relies on exploring ge ometric properties of continuity or stopping regions. Especially, we make use of the concepts of convex sets and supporting hyperplane. Explicit formulae and efficiently computable bounds are obtained for average stopping times. Our techniques can be applied to bound average stopping times involving random vectors, nonlinear stopping boundary, and constraints of time indexes. Moreover, we establish a stochastic characteristic of convex sets and generalize Jensens inequality, Walds equations and Lordens inequality, which are useful for investigating average stopping times.
We consider a problem of data integration. Consider determining which genes affect a disease. The genes, which we call predictor objects, can be measured in different experiments on the same individual. We address the question of finding which genes are predictors of disease by any of the experiments. Our formulation is more general. In a given data set, there are a fixed number of responses for each individual, which may include a mix of discrete, binary and continuous variables. There is also a class of predictor objects, which may differ within a subject depending on how the predictor object is measured, i.e., depend on the experiment. The goal is to select which predictor objects affect any of the responses, where the number of such informative predictor objects or features tends to infinity as sample size increases. There are marginal likelihoods for each way the predictor object is measured, i.e., for each experiment. We specify a pseudolikelihood combining the marginal likelihoods, and propose a pseudolikelihood information criterion. Under regularity conditions, we establish selection consistency for the pseudolikelihood information criterion with unbounded true model size, which includes a Bayesian information criterion with appropriate penalty term as a special case. Simulations indicate that data integration improves upon, sometimes dramatically, using only one of the data sources.
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, for cing their convergence to the same, possibly random, limit. Random walks of this form have been introduced in the context of urn models and in stochastic approximation. We also propose an application to opinion dynamics in a random network evolving via preferential attachment. We study, in particular, random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. Under certain conditions, synchronization is faster than convergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا