ﻻ يوجد ملخص باللغة العربية
We explore squeezed coherent states of a 3-dimensional generalized isotonic oscillator whose radial part is the newly introduced generalized isotonic oscillator whose bound state solutions have been shown to admit the recently discovered $X_1$-Laguerre polynomials. We construct a complete set of squeezed coherent states of this oscillator by exploring the squeezed coherent states of the radial part and combining the latter with the squeezed coherent states of the angular part. We also prove that the three mode squeezed coherent states resolve the identity operator. We evaluate Mandels $Q$-parameter of the obtained states and demonstrate that these states exhibit sub-Possionian and super-Possionian photon statistics. Further, we illustrate the squeezing properties of these states, both in the radial and angular parts, by choosing appropriate observables in the respective parts. We also evaluate Wigner function of these three mode squeezed coherent states and demonstrate squeezing property explicitly.
In this paper we treat coherent-squeezed states of Fock space once more and study some basic properties of them from a geometrical point of view. Since the set of coherent-squeezed states ${ket{alpha, beta} | alpha, beta in fukuso}$ makes a real 4-
Nonlinear fermions of degree $n$ ($n$-fermions) are introduced as particles with creation and annihilation operators obeying the simple nonlinear anticommutation relation $AA^dagger + {A^dagger}^n A^n = 1$. The ($n+1$)-order nilpotency of these opera
The 2:1 two-dimensional anisotropic quantum harmonic oscillator is considered and new sets of states are defined by means of normal-ordering non-linear operators through the use of non-commutative binomial theorems as well as solving recurrence relat
We construct photon modulated coherent states of a generalized isotonic oscillator by expanding the newly introduced superposed operator through Weyl ordering method. We evaluate the parameter $A_3$ and the $s$-parameterized quasi probability distrib
Current definitions of both squeezing operator and squeezed vacuum state are critically examined on the grounds of consistency with the underlying su(1,1) algebraic structure. Accordingly, the generalized coherent states for su(1,1) in its Schwinger