ﻻ يوجد ملخص باللغة العربية
We present the latest results from a spectroscopic survey designed to uncover the hidden population of AM Canum Venaticorum (AM CVn) binaries in the photometric database of the Sloan Digital Sky Survey (SDSS). We selected ~2000 candidates based on their photometric colours, a relatively small sample which is expected to contain the majority of all AM CVn binaries in the SDSS (expected to be ~50). We present two new candidate AM CVn binaries discovered using this strategy: SDSS J104325.08+563258.1 and SDSS J173047.59+554518.5. We also present spectra of 29 new cataclysmic variables, 23 DQ white dwarfs and 21 DZ white dwarfs discovered in this survey. The survey is now approximately 70 per cent complete, and the discovery of seven new AM CVn binaries indicates a lower space density than previously predicted. From the essentially complete g <= 19 sample, we derive an observed space density of (5 +/- 3) x10^-7 pc^-3; this is lower than previous estimates by a factor of 3. The sample has been cross-matched with the GALEX All-Sky Imaging Survey database, and with Data Release 9 of the UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS). The addition of UV photometry allows new colour cuts to be applied, reducing the size of our sample to ~1100 objects. Optimising our followup should allow us to uncover the remaining AM CVn binaries present in the SDSS, providing the larger homogeneous sample required to more reliably estimate their space density.
The AM Canum Venaticorum stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of 6 AM CVn stars (out of a total population of 18) th
AM CVn systems are a select group of ultracompact binaries with the shortest orbital periods of any known binary subclass; mass-transfer is likely from a low-mass (partially-)degenerate secondary onto a white dwarf primary, driven by gravitational ra
AM CVn systems are a rare (about a dozen previously known) class of cataclysmic variables, arguably encompassing the shortest orbital periods (down to about 10 minutes) of any known binaries. Both binary components are thought to be degenerate (or pa
We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial veloc
To obtain a better statistics on the occurrence of magnetism among white dwarfs, we searched the spectra of the hydrogen atmosphere white dwarf stars (DAs) in the Data Release 7 of the Sloan Digital Sky Survey (SDSS) for Zeeman splittings and estimat