ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards pump-probe experiments of defect dynamics with short ion beam pulses

134   0   0.0 ( 0 )
 نشر من قبل Thomas Schenkel
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3x1011 ions/pulse), 0.6 to ~600 ns duration pulses of 0.13 to 1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1 to 10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ~30,000 K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.



قيم البحث

اقرأ أيضاً

119 - A. Persaud , J.J. Barnard , H. Guo 2014
Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at t he new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.
We present a time-resolved infrared (IR) pump and extreme-ultraviolet (XUV) probe diffraction experiment to investigate ultrafast structural dynamics in colloidal crystals with picosecond resolution. The experiment was performed at the FLASH facility at DESY with a fundamental wavelength of 8 nm. In our experiment, the temporal changes of Bragg peaks were analyzed and their frequency components were calculated using Fourier analysis. Periodic modulations in the colloidal crystal were localized at a frequency of about 4-5 GHz. Based on the Lamb theory, theoretical calculations of vibrations of the isotropic elastic polystyrene spheres of 400 nm in size reveal a 5.07 GHz eigenfrequency of the ground (breathing) mode.
We demonstrate the possibility to run a single-pass free-electron laser in a new dynamical regime, which can be exploited to perform two-colour pump-probe experiments in the VUV/X-ray domain, using the free-electron laser emission both as a pump and as a probe. The studied regime is induced by triggering the free-electron laser process with a powerful laser pulse, carrying a significant and adjustable frequency chirp. As a result, the emitted light is eventually split in two sub-pulses, whose spectral and temporal separations can be independently controlled. We provide a theoretical description of this phenomenon, which is found in good agreement with experiments performed on the FERMI@Elettra free-electron laser.
We explore the influence of the nanoporous structure on the thermal relaxation of electrons and holes excited by ultrashort laser pulses ($sim 7$ fs) in thin gold films. Plasmon decay into hot electron-hole pairs results in the generation of a Fermi- Dirac distribution thermalized at a temperature $T_{mathrm{e}}$ higher than the lattice temperature $T_{mathrm{l}}$. The relaxation times of the energy exchange between electrons and lattice, here measured by pump-probe spectroscopy, is slowed down by the nanoporous structure, resulting in much higher peak $T_{mathrm{e}}$ than for bulk gold films. The electron-phonon coupling constant and the Debye temperature are found to scale with the metal filling factor $f$ and a two-temperature model reproduces the data. The results open the way for electron temperature control in metals by engineering of the nanoporous geometry.
Time- and angle-resolved photoemission spectroscopy (TR-ARPES) accesses the electronic structure of solids under optical excitation, and is a powerful technique for studying the coupling between electrons and collective modes. One approach to infer e lectron-boson coupling is through the relaxation dynamics of optically-excited electrons, and the characteristic timescales of energy redistribution. A common description of electron relaxation dynamics is through the effective electronic temperature. Such a description requires that thermodynamic quantities are well-defined, an assumption that is generally violated at early delays. Additionally, precise estimation of the non-thermal window -- within which effective temperature models may not be applied -- is challenging. We perform TR-ARPES on graphite and show that Boltzmann rate equations can be used to calculate the time-dependent electronic occupation function, and reproduce experimental features given by non-thermal electron occupation. Using this model, we define a quantitative measure of non-thermal electron occupation and use it to define distinct phases of electron relaxation in the fluence-delay phase space. More generally, this approach can be used to inform the non-thermal-to-thermal crossover in pump-probe experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا