ترغب بنشر مسار تعليمي؟ اضغط هنا

PHIBSS: molecular gas content and scaling relations in z~1-3 normal star forming galaxies

116   0   0.0 ( 0 )
 نشر من قبل Linda J. Tacconi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in normal star forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z~1.2 and 2.2, with log(M*(M_solar))>10.4 and log(SFR(M_solar/yr))>1.5. Including a correction for the incomplete coverage of the M*-SFR plane, we infer average gas fractions of ~0.33 at z~1.2 and ~0.47 at z~2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z~1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular gas - star formation relation for the z=1-3 SFGs is near-linear, with a ~0.7 Gyrs gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z~0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M*, gas fractions correlate strongly with the specific star formation rate. The variation of specific star formation rate between z~0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.



قيم البحث

اقرأ أيضاً

142 - S. Berta , D. Lutz , R. Nordon 2013
We use deep far-infrared data from the PEP/GOODS-Herschel surveys and rest frame ultraviolet photometry to study the evolution of the molecular gas mass function of normal star forming galaxies. Computing the molecular gas mass, M(mol), by scaling st ar formation rates (SFR) through depletion timescales, or combining IR luminosity and obscuration properties as in Nordon et al., we obtain M(mol) for roughly 700, z=0.2-3.0 galaxies near the star forming main sequence. The number density of galaxies follows a Schechter function of M(mol). The characteristic mass M* is found to strongly evolve up to z~1, and then to flatten at earlier epochs, resembling the infrared luminosity evolution of similar objects. At z~1, our result is supported by an estimate based on the stellar mass function of star forming galaxies and gas fraction scalings from the PHIBSS survey. We compare our measurements to results from current models, finding better agreement with those that are treating star formation laws directly rather than in post-processing. Integrating the mass function, we study the evolution of the M(mol) density and its density parameter Omega(mol).
369 - C. M. Casey 2009
[abridged] We present interferometric CO observations of twelve z~2 submillimetre-faint, star-forming radio galaxies (SFRGs) which are thought to be ultraluminous infrared galaxies (ULIRGs) possibly dominated by warmer dust (T_dust ~> 40 K) than subm illimetre galaxies (SMGs) of similar luminosities. Four other CO-observed SFRGs are included from the literature, and all observations are taken at the Plateau de Bure Interferometer (PdBI) in the compact configuration. Ten of the sixteen SFRGs observed in CO (63%) are detected at >4sigma with a mean inferred molecular gas mass of ~2*10^10 M_sun. SFRGs trend slightly above the local ULIRG L_FIR-L_CO relation. Since SFRGs are about two times fainter in radio luminosity but exhibit similar CO luminosities to SMGs, this suggests SFRGs are slightly more efficient star formers than SMGs at the same redshifts. SFRGs also have a narrow mean CO line width, 320+-80km/s. SFRGs bridge the gap between properties of very luminous >5*10^12 L_sun SMGs and those of local ULIRGs and are consistent with intermediate stage major mergers. We suspect that more moderate-luminosity SMGs, not yet surveyed in CO, would show similar molecular gas properties to SFRGs. The AGN fraction of SFRGs is consistent with SMGs and is estimated to be 0.3+-0.1, suggesting that SFRGs are observed near the peak phase of star formation activity and not in a later, post-SMG enhanced AGN phase. This CO survey of SFRGs serves as a pilot project for the much more extensive survey of Herschel and SCUBA-2 selected sources which only partially overlap with SMGs. Better constraints on CO properties of a diverse high-z ULIRG population are needed from ALMA to determine the evolutionary origin of extreme starbursts, and what role ULIRGs serve in catalyzing the formation of massive stellar systems in the early Universe.
This paper provides an update of our previous scaling relations (Genzel et al.2015) between galaxy integrated molecular gas masses, stellar masses and star formation rates, in the framework of the star formation main-sequence (MS), with the main goal to test for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ~1mm dust photometry, in a large sample of 1444 star forming galaxies (SFGs) between z=0 and 4. The sample covers the stellar mass range log(M*/M_solar)=9.0-11.8, and star formation rates relative to that on the MS, delta_MS=SFR/SFR(MS), from 10^{-1.3} to 10^{2.2}. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t_depl, defined as the ratio of molecular gas mass to star formation rate, scales as (1+z)^{-0.6}x(delta_MS)^{-0.44}, and is only weakly dependent on stellar mass. The ratio of molecular-to-stellar mass mu_gas depends on (1+z)^{2.5}x (delta_MS)^{0.52}x(M*)^{-0.36}, which tracks the evolution of the specific star formation rate. The redshift dependence of mu_gas requires a curvature term, as may the mass-dependences of t_depl and mu_gas. We find no or only weak correlations of t_depl and mu_gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high-z.
We study the molecular gas content of 24 star-forming galaxies at $z=3-4$, with a median stellar mass of $10^{9.1}$ M$_{odot}$, from the MUSE Hubble Ultra Deep Field (HUDF) Survey. Selected by their Lyman-alpha-emission and H-band magnitude, the gala xies show an average EW $approx 20$ angstrom, below the typical selection threshold for Lyman Alpha Emitters (EW $> 25$ angstrom), and a rest-frame UV spectrum similar to Lyman Break Galaxies. We use rest-frame optical spectroscopy from KMOS and MOSFIRE, and the UV features observed with MUSE, to determine the systemic redshifts, which are offset from Lyman alpha by 346 km s$^{-1}$, with a 100 to 600 km s$^{-1}$ range. Stacking CO(4-3) and [CI](1-0) (and higher-$J$ CO lines) from the ALMA Spectroscopic Survey of the HUDF (ASPECS), we determine $3sigma$ upper limits on the line luminosities of $4.0times10^{8}$ K km s$^{-1}$pc$^{2}$ and $5.6times10^{8}$ K km s$^{-1}$pc$^{2}$, respectively (for a 300 km s$^{-1}$ linewidth). Stacking the 1.2 mm and 3 mm dust continuum flux densities, we find a $3sigma$ upper limits of 9 $mu$Jy and $1.2$ $mu$Jy, respectively. The inferred gas fractions, under the assumption of a Galactic CO-to-H$_{2}$ conversion factor and gas-to-dust ratio, are in tension with previously determined scaling relations. This implies a substantially higher $alpha_{rm CO} ge 10$ and $delta_{rm GDR} ge 1200$, consistent with the sub-solar metallicity estimated for these galaxies ($12 + log(O/H) approx 7.8 pm 0.2$). The low metallicity of $z ge 3$ star-forming galaxies may thus make it very challenging to unveil their cold gas through CO or dust emission, warranting further exploration of alternative tracers, such as [CII].
Assessments of the cold-gas reservoir in galaxies are a cornerstone for understanding star-formation processes and the role of feedback and baryonic cycling in galaxy evolution. Here we exploit a sample of 392 galaxies (dubbed MAGMA, Metallicity and Gas for Mass Assembly), presented in a recent paper, to quantify molecular and atomic gas properties across a broad range in stellar mass, Mstar, from $sim 10^7 - 10^{11}$ Msun. First, we find the metallicity ($Z$) dependence of alpha_CO to be shallower than previous estimates, with alpha_CO$propto (Z/Z_odot)^{-1.55}$. Second, molecular gas mass MH2 is found to be strongly correlated with Mstar and star-formation rate (SFR), enabling predictions of MH2 good to within $sim$0.2 dex. The behavior of atomic gas mass MHI in MAGMA scaling relations suggests that it may be a third, independent variable that encapsulates information about the circumgalactic environment and gas accretion. If Mgas is considered to depend on MHI, together with Mstar and SFR, we obtain a relation that predicts Mgas to within $sim$0.05 dex. Finally, the analysis of depletion times and the scaling of MHI/Mstar and MH2/Mstar over three different mass bins suggests that the partition of gas and the regulation of star formation through gas content depends on the mass regime. Dwarf galaxies tend to be overwhelmed by (HI) accretion, while for galaxies in the intermediate Mstar gas-equilibrium bin, star formation proceeds apace with gas availability. In the most massive gas-poor, bimodality galaxies, HI does not apparently participate in star formation, although it generally dominates in mass over H2. Our results confirm that atomic gas plays a key role in baryonic cycling, and is a fundamental ingredient for current and future star formation, especially in dwarf galaxies. (abridged for arXiv)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا