ﻻ يوجد ملخص باللغة العربية
A plane poset is a finite set with two partial orders, satisfying a certain incompatibility condition. The set PP of isoclasses of plane posets owns two products, and an infinitesimal Hopf algebra structure is defined on the vector space H_PP generated by PP, using the notion of biideals of plane posets. We here define a partial order on PP, making it isomorphic to the set of partitions with the weak Bruhat order. We prove that this order is compatible with both products of PP; moreover, it encodes a non degenerate Hopf pairing on the infinitesimal Hopf algebra H_PP.
Let $(W,S)$ be a finite Weyl group and let $win W$. It is widely appreciated that the descent set D(w)={sin S | l(ws)<l(w)} determines a very large and important chapter in the study of Coxeter groups. In this paper we generalize some of those result
The rook monoid $R_n$ is the finite monoid whose elements are the 0-1 matrices with at most one nonzero entry in each row and column. The group of invertible elements of $R_n$ is isomorphic to the symmetric group $S_n$. The natural extension to $R_n$
Toric posets are cyclic analogues of finite posets. They can be viewed combinatorially as equivalence classes of acyclic orientations generated by converting sources into sinks, or geometrically as chambers of toric graphic hyperplane arrangements. I
Let $H$ be a finite dimensional semisimple Hopf algebra, $A$ a differential graded (dg for short) $H$-module algebra. Then the smash product algebra $A#H$ is a dg algebra. For any dg $A#H$-module $M$, there is a quasi-isomorphism of dg algebras: $mat
We discuss the theory of certain partially ordered sets that capture the structure of commutation classes of words in monoids. As a first application, it follows readily that counting words in commutation classes is #P-complete. We then apply the par