ﻻ يوجد ملخص باللغة العربية
We formulate a spherical harmonically decomposed 1+1 scheme to self-consistently evolve the trajectory of a point particle and its gravitational metric perturbation to a Schwarzschild background spacetime. Following the work of Moncrief, we write down an action for perturbations in space-time geometry, combine that with the action for a point-particle, and then obtain Hamiltonian equations of motion for metric perturbations, the particles coordinates, as well as their canonical momenta. Hamiltonian equations for the metric-perturbation and their conjugate momenta reduce to Zerilli-Moncrief and Regge-Wheeler master equations with source terms, which are gauge invariant, plus auxiliary equations that specify gauge. Hamiltonian equations for the particle, on the other hand, now include effect of metric perturbations - with these new terms derived from the same interaction Hamiltonian that had lead to those well-known source terms. In this way, space-time geometry and particle motion can be evolved in a self-consistent manner, in principle in any gauge. However, the point-particle nature of our source requires regularization, and we outline how the Detweiler-Whiting approach can be applied. In this approach, a singular field can be obtained using Hadamard decomposition of the Greens function and the regular field, which needs to be evolved numerically, is the result of subtracting the singular field from the total metric perturbation. In principle, any gauge that has the singular-regular field decomposition is suitable for our self-consistent scheme. In reality, however, this freedom is only possible if our singular field has a high enough level of smoothness. In the case of Lorenz gauge, for each l and m, we have 2 wave equations to evolve gauge invariant quantities and 8 first order differential equations to fix the gauge and determine the metric components.
Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars $psi_0$ or $psi_4$, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated wit
We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sp
We investigate the topology of Schwarzschilds black hole through the immersion of this space-time in spaces of higher dimension. Through the immersions of Kasner and Fronsdal we calculate the extension of the Schwarzschilds black hole.
We present results from calculations of the orbital evolution in eccentric binaries of nonrotating black holes with extreme mass-ratios. Our inspiral model is based on the method of osculating geodesics, and is the first to incorporate the full gravi
Following the initial work of Calcagni et al. on the black holes in multi-fractional theories, we focus on the Schwarzschild black hole in multi-fractional theory with q-derivatives. After presenting its Hawking and Hayward temperatures in detail, we