ﻻ يوجد ملخص باللغة العربية
Dependent nonparametric processes extend distributions over measures, such as the Dirichlet process and the beta process, to give distributions over collections of measures, typically indexed by values in some covariate space. Such models are appropriate priors when exchangeability assumptions do not hold, and instead we want our model to vary fluidly with some set of covariates. Since the concept of dependent nonparametric processes was formalized by MacEachern [1], there have been a number of models proposed and used in the statistics and machine learning literatures. Many of these models exhibit underlying similarities, an understanding of which, we hope, will help in selecting an appropriate prior, developing new models, and leveraging inference techniques.
While the choice of prior is one of the most critical parts of the Bayesian inference workflow, recent Bayesian deep learning models have often fallen back on vague priors, such as standard Gaussians. In this review, we highlight the importance of pr
Isotropic Gaussian priors are the de facto standard for modern Bayesian neural network inference. However, such simplistic priors are unlikely to either accurately reflect our true beliefs about the weight distributions, or to give optimal performanc
We propose a deep generative factor analysis model with beta process prior that can approximate complex non-factorial distributions over the latent codes. We outline a stochastic EM algorithm for scalable inference in a specific instantiation of this model and present some preliminary results.
Encoding domain knowledge into the prior over the high-dimensional weight space of a neural network is challenging but essential in applications with limited data and weak signals. Two types of domain knowledge are commonly available in scientific ap
In federated learning problems, data is scattered across different servers and exchanging or pooling it is often impractical or prohibited. We develop a Bayesian nonparametric framework for federated learning with neural networks. Each data server is