ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-dependent q-deformed coherent states for generalized uncertainty relations

277   0   0.0 ( 0 )
 نشر من قبل Andreas Fring
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate properties of generalized time-dependent q-deformed coherent states for a noncommutative harmonic oscillator. The states are shown to satisfy a generalized version of Heisenbergs uncertainty relations. For the initial value in time the states are demonstrated to be squeezed, i.e. the inequalities are saturated, whereas when time evolves the uncertainty product oscillates away from this value albeit still respecting the relations. For the canonical variables on a noncommutative space we verify explicitly that Ehrenfests theorem hold at all times. We conjecture that the model exhibits revival times to infinite order. Explicit sample computations for the fractional revival times and superrevival times are presented.



قيم البحث

اقرأ أيضاً

n-ary algebras have played important roles in mathematics and mathematical physics. The purpose of this paper is to construct a deformation of Virasoro-Witt n-algebra based on an oscillator realization with two independent parameters (p, q) and investigate its n-Lie subalgebra.
We consider a particle moving on a 2-sphere in the presence of a constant magnetic field. Building on earlier work in the nonmagnetic case, we construct coherent states for this system. The coherent states are labeled by points in the associated phas e space, the (co)tangent bundle of S^2. They are constructed as eigenvectors for certain annihilation operators and expressed in terms of a certain heat kernel. These coherent states are not of Perelomov type, but rather are constructed according to the complexifier approach of T. Thiemann. We describe the Segal--Bargmann representation associated to the coherent states, which is equivalent to a resolution of the identity.
224 - Jerzy Lukierski 2009
We transform the oscillator algebra with kappa-deformed multiplication rule, proposed in [1],[2], into the oscillator algebra with kappa-deformed flip operator and standard multiplication. We recall that the kappa-multiplication of the kappa-oscillat ors puts them off-shell. We study the explicit forms of modified mass-shell conditions in both formulations: with kappa-multiplication and with kappa-flip operation. On the example of kappa-deformed 2-particle states we study the clustered nonfactorizable form of the kappa-deformed multiparticle states. We argue that the kappa-deformed star product of two free fields leads in similar way to a nonfactorizable kappa-deformed bilocal field. We conclude with general remarks concerning the kappa-deformed n-particle clusters and kappa-deformed star product of n fields.
We construct various systems of coherent states (SCS) on the $O(D)$-equivariant fuzzy spheres $S^d_Lambda$ ($d=1,2$, $D=d!+!1$) constructed in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451] and study their localizations in configuration space as well as angular momentum space. These localizations are best expressed through the $O(D)$-invariant square space and angular momentum uncertainties $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$ in the ambient Euclidean space $mathbb{R}^D$. We also determine general bounds (e.g. uncertainty relations from commutation relations) for $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$, and partly investigate which SCS may saturate these bounds. In particular, we determine $O(D)$-equivariant systems of optimally localized coherent states, which are the closest quantum states to the classical states (i.e. points) of $S^d$. We compare the results with their analogs on commutative $S^d$. We also show that on $S^2_Lambda$ our optimally localized states are better localized than those on the Madore-Hoppe fuzzy sphere with the same cutoff $Lambda$.
We describe coherent states and associated generalized Grassmann variables for a system of $m$ independent $q$-boson modes. A resolution of unity in terms of generalized Berezin integrals leads to generalized Grassmann symbolic calculus. Formulae for operator traces are given and the thermodynamic partition function for a system of $q$-boson oscillators is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا