ﻻ يوجد ملخص باللغة العربية
We report on the thermal and electrical conductivities of two liquid silicon-oxygen-iron mixtures (Fe$_{0.82}$Si$_{0.10}$O$_{0.08}$ and Fe$_{0.79}$Si$_{0.08}$O$_{0.13}$), representative of the composition of the Earths outer core at the relevant pressure-temperature conditions, obtained from density functional theory calculations with the Kubo-Greenwood formulation. We find thermal conductivities $k$ =100 (160) W m$^{-1}$ K$^{-1}$, and electrical conductivities $sigma = 1.1 (1.3) times 10^6 Omega^{-1}$ m$^{-1}$ at the top (bottom) of the outer core. These new values are between 2 and 3 times higher than previous estimates, and have profound implications for our understanding of the Earths thermal history and the functioning of the Earths magnetic field, including rapid cooling rate for the whole core or high level of radiogenic elements in the core. We also show results for a number of structural and dynamic properties of the mixtures, including the partial radial distribution functions, mean square displacements, viscosities and speeds of sound.
The transport properties of iron under Earths inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions rem
The electronic state and transport properties of hot dense iron are of the utmost importance to geophysics. Combining the density functional and dynamical mean field theories we study the impact of electron correlations on electrical and thermal resi
The electronic and thermal transport properties of the Earths core are crucial for many geophysical models such as the geodynamo model of the Earths magnetic field and of its reversals. Here we show, by considering bcc-iron and iron-rich iron-silicon
Some Bravais lattices have a particular geometry that can slow down the motion of Bloch electrons by pre-localization due to the band-structure properties. Another known source of electronic localization in solids is the Coulomb repulsion in partiall
{em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant