ﻻ يوجد ملخص باللغة العربية
The resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the non-equilibrium transport near a quantum phase transition in a spinless dissipative resonant-level model, extending earlier work [Phys. Rev. Lett. 102, 216803 (2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renormalization group approach is applied to compute the non-equilibrium current in the presence of a finite bias voltage V. In the linear response regime V ->0, the system exhibits as a function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT) type. We address fundamental issues of the non-equilibrium transport near the quantum phase transition: Does the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the non-equilibrium conductance near the transition? At finite temperatures, we show that the conductance follows the equilibrium scaling for V< T, while it obeys a distinct non-equilibrium profile for V>T. We furthermore provide new signatures of the transition in the finite-frequency current noise and AC conductance via the recently developed Functional Renormalization Group (FRG) approach. The generalization of our analysis to non-equilibrium transport through a resonant level coupled to two chiral Luttinger-liquid leads, generated by the fractional quantum Hall edge states, is discussed. Our work on dissipative resonant level has direct relevance to the experiments in a quantum dot coupled to resistive environment, such as H. Mebrahtu et al., Nature 488, 61, (2012).
Nonequilibrium properties of correlated quantum matter are being intensively investigated because of the rich interplay between external driving and the many-body correlations. Of particular interest is the nonequilibrium behavior near a quantum crit
We investigate experimentally an exotic state of electronic matter obtained by fine-tuning to a quantum critical point (QCP), realized in a spin-polarized resonant level coupled to strongly dissipative electrodes. Several transport scaling laws near
We provide a simple set of rules for predicting interference effects in off-resonant transport through single-molecule junctions. These effects fall in two classes, showing respectively an odd or an even number of nodes in the linear conductance with
We investigate the non-equilibrium transport properties of a disordered molecular nanowire. The nanowire is regarded as a quasi-one-dimensional organic crystal composed of self-assembled molecules. One orbital and a single random energy are assigned
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongl