ﻻ يوجد ملخص باللغة العربية
Using a sample of 225.3 million $jpsi$ events collected with the BESIII detector at the BEPCII $e^+e^-$ collider in 2009, searches for the decays of $eta$ and $eta^primetopi^+ e^- bar{ u}_e +c.c.$ in $jpsi to phi eta$ and $phieta^prime$ are performed. The $phi$ signals, which are reconstructed in $K^+K^-$ final states, are used to tag $eta$ and $eta^prime$ semileptonic decays. No signals are observed for either $eta$ or $eta^prime$, and upper limits at the 90% confidence level are determined to be $7.3times 10^{-4}$ and $5.0times 10^{-4}$ for the ratios $frac{{mathcal B}(etato pi^+ e^- bar{ u}_e +c.c.)}{{mathcal B}(eta to pippimpiz)}$ and $frac{{mathcal B}(eta^primeto pi^+ e^-bar{ u}_e +c.c.)}{{mathcal B}(eta^prime to pippimeta)}$, respectively. These are the first upper limit values determined for $eta$ and $eta^prime$ semileptonic weak decays.
We report the first observation of the decay D^+ -> eta e^+ nu_e in two analyses, which combined provide a branching fraction of B(D+ -> eta e nu) = (2.16 +/- 0.53 +/- 0.07) x 10^{-4}. We also provide an improved measurement of B(D+ -> eta e nu) = (1
A search for the $C!P$-violating strong decays $eta to pi^+pi^-$ and $eta^prime(958) to pi^+pi^-$ has been performed using approximately $2.5 times 10^{7}$ events of each of the decays $D^+ to pi^+pi^+pi^-$ and $D_s^+ to pi^+pi^+pi^-$, recorded by th
A search for the charmless $B^{0}_{s} to eta^{prime}phi$ decay is performed using $pp$ collision data collected by the LHCb experiment at centre-of-mass energies of $7$ and $8$ TeV, corresponding to an integrated luminosity of 3 fb$^{-1}$. No signal
A search for the rare decay $eta^{prime} to e^+e^-$ has been performed with the SND detector at the VEPP-2000 $e^+e^-$ collider. The inverse reaction $e^+e^- to eta^{prime}$ and $eta^{prime}$ five decay chains have been used for this search. The uppe
The hadronic decays eta, eta-prime -> 3 pi and eta-prime -> eta pi pi are investigated within the framework of U(3) chiral effective field theory in combination with a relativistic coupled-channels approach. Final state interactions are included by d