ﻻ يوجد ملخص باللغة العربية
Dynamical modeling and strong lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., rho_tot ~ r^gamma with gamma approx -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of gamma approx -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved in the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward gamma ~ -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of gamma ~ -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.
We carry out a systematic investigation of the total mass density profile of massive (Mstar>2e11 Msun) early-type galaxies and its dependence on galactic properties and host halo mass with the aid of a variety of lensing/dynamical data and large mock
Despite the insights gained in the last few years, our knowledge about the formation and evolution scenario for the spheroid-dominated galaxies is still incomplete. New and more powerful cosmological simulations have been developed that together with
Recent progress is summarized on the determination of the density distributions of stars and dark matter, stellar kinematics, and stellar population properties, in the extended, low surface brightness halo regions of elliptical galaxies. With integra
We carry out a systematic investigation of the total mass density profile of massive (Mstar~3e11 Msun) early-type galaxies and its dependence on redshift, specifically in the range 0<z<1. We start from a large sample of SDSS early-type galaxies with
We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despi