ﻻ يوجد ملخص باللغة العربية
We present a flexible and effective ab-initio scheme to build many-body models for molecular nanomagnets, and to calculate magnetic exchange couplings and zero-field splittings. It is based on using localized Foster-Boys orbitals as one-electron basis. We apply this scheme to three paradigmatic systems, the antiferromagnetic rings Cr8 and Cr7Ni and the single molecule magnet Fe4. In all cases we identify the essential magnetic interactions and find excellent agreement with experiments.
Impressive advances in the field of molecular spintronics allow one to study electron transport through individual magnetic molecules embedded between metallic leads in the purely quantum regime of single electron tunneling. Besides fundamental inter
The magnetization of the prototypical molecular magnet Mn12-acetate exhibits a series of sharp steps at low temperatures due to quantum tunneling at specific resonant values of magnetic field applied along the easy c-axis. An abrupt reversal of the m
We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal STM-like setup and employ the recently proposed stea
In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation, and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital
Excitons in monolayer transition metal dichalcogenide (TMD) provide a paradigm of composite Boson in 2D system. This letter reports a photoluminescence and reflectance study of excitons in monolayer molybdenum diselenide (MoSe2) with electrostatic ga