ﻻ يوجد ملخص باللغة العربية
Low-mass stars play a key role in many different areas of astrophysics. In this article, I provide a brief overview of the evolution of low-mass stars, and discuss some of the uncertainties and problems currently affecting low-mass stellar models. Emphasis is placed on the following topics: the solar abundance problem, mass loss on the red giant branch, and the level of helium enrichment associated to the multiple populations that are present in globular clusters.
Open clusters (OC) of 1-3 Gyr age contain intermediate-to-low-mass stars in evolutionary phases of multiple relevance to understanding Li evolution. Stars leaving the main sequence (MS) from the hot side of the Lithium dip (LD) at a fixed age can inc
Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass-loss and dust production can dramatically effect the chemical enrichme
We present an analysis of K2 light curves (LCs) from Campaigns 4 and 13 for members of the young ($sim$3 Myr) Taurus association, in addition to an older ($sim$30 Myr) population of stars that is largely in the foreground of the Taurus molecular clou
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in
We have undertaken a systematic study of pre-main sequence (PMS) stars spanning a wide range of masses (0.5 - 4 Msolar), metallicities (0.1 - 1 Zsolar) and ages (0.5 - 30 Myr). We have used the Hubble Space Telescope (HST) to identify and characteris