ترغب بنشر مسار تعليمي؟ اضغط هنا

Berry phases of quantum trajectories in semiconductors under strong terahertz fields

214   0   0.0 ( 0 )
 نشر من قبل Ren-Bao Liu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum evolution of particles under strong fields can be essentially captured by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand extreme nonlinear optical phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz sideband generation (HSG). While HHG and ATI have been mostly studied in atoms and molecules, the HSG in semiconductors can have interesting effects due to possible nontrivial vacuum states of band materials. We find that in a semiconductor with non-vanishing Berry curvature in its energy bands, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field can accumulate Berry phases. Taking monolayer MoS$_2$ as a model system, we show that the Berry phases appear as the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This finding reveals an interesting transport effect in the extreme nonlinear optics regime.



قيم البحث

اقرأ أيضاً

355 - Fan Yang , Ren-Bao Liu 2014
A quantum object can accumulate a geometric phase when it is driven along a trajectory in a parameterized state space with non-trivial gauge structures. Inherent to quantum evolutions, a system can not only accumulate a quantum phase but may also exp erience dephasing, or quantum diffusion. Here we show that the diffusion of quantum trajectories can also be of geometric nature as characterized by the imaginary part of the geometric phase. Such an imaginary geometric phase results from the interference of geometric phase dependent fluctuations around the quantum trajectory. As a specific example, we study the quantum trajectories of the optically excited electron-hole pairs, driven by an elliptically polarized terahertz field, in a material with non-zero Berry curvature near the energy band extremes. While the real part of the geometric phase leads to the Faraday rotation of the linearly polarized light that excites the electron-hole pair, the imaginary part manifests itself as the polarization ellipticity of the terahertz sidebands. This discovery of geometric quantum diffusion extends the concept of geometric phases.
168 - Andreas Glossner 2012
We show that strong electric fields of ~ 30 kV cm^(-1) at terahertz frequencies can significantly weaken the superconducting characteristics of cuprate superconductors. High-power terahertz time-domain spectroscopy (THz-TDS) was used to investigate t he in-plane conductivity of YBa2Cu3O7-delta (YBCO) with highly intense single-cycle terahertz pulses. Even though the terahertz photon energy (~ 1.5 meV) was significantly smaller than the energy gap in YBCO (~ 20-30 meV), the optical conductivity was highly sensitive to the field strength of the applied terahertz transients. Possibly, this is due to an ultrafast, field-induced modification of the superconductors effective coupling function, leading to a massive Cooper pair breakup. The effect was evident for several YBCO thin films on MgO and LSAT substrates.
194 - Huan Wang , Ka-Di Zhu 2008
The voltage-controlled Berry phases in two vertically coupled InGaAs/GaAs quantum dots are investigated theoretically. It is found that Berry phases can be changed dramatically from 0 to 2$pi$ (or 2$pi$ to 0) only simply by turning the external volta ge. Under realistic conditions, as the tunneling is varied from $0.8eV$ to $0.9eV$ via a bias voltage, the Berry phases are altered obviously, which can be detected in an interference experiment. The scheme is expected to be useful in constructing quantum computation based on geometric phases in an asymmetrical double quantum dot controlled by voltage.
We present a comprehensive experimental and numerical study of magnetization dynamics triggered in a thin metallic film by single-cycle terahertz pulses of $sim20$ MV/m electric field amplitude and $sim1$ ps duration. The experimental dynamics is pro bed using the femtosecond magneto-optical Kerr effect (MOKE), and it is reproduced numerically using macrospin simulations. The magnetization dynamics can be decomposed in three distinct processes: a coherent precession of the magnetization around the terahertz magnetic field, an ultrafast demagnetization that suddenly changes the anisotropy of the film, and a uniform precession around the equilibrium effective field that is relaxed on the nanosecond time scale, consistent with a Gilbert damping process. Macrospin simulations quantitatively reproduce the observed dynamics, and allow us to predict that novel nonlinear magnetization dynamics regimes can be attained with existing table-top terahertz sources.
Demagnetization in a thin film due to a terahertz pulse of magnetic field is investigated. Linearized LLG equation in the Fourier space to describe the magnetization dynamics is derived, and spin waves time evolution is studied. Finally, the demagnet ization due to spin waves dynamics and recent experimental observations on similar magnetic system are compared. As a result of it, the marginal role of spin waves dynamics in loss of magnetization is established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا