ﻻ يوجد ملخص باللغة العربية
The Backlund Transform, first developed in the context of differential geometry, has been classically used to obtain multi-soliton states in completely integrable infinite dimensional dynamical systems. It has recently been used to study the stability of these special solutions. We offer here a dynamical perspective on the Backlund Transform, prove an abstract orbital stability theorem, and demonstrate its utility by applying it to the sine-Gordon equation and the Toda lattice.
The geometry of an admissible Backlund transformation for an exterior differential system is described by an admissible Cartan connection for a geometric structure on a tower with infinite--dimensional skeleton which is the universal prolongation of a $|1|$--graded semi-simple Lie algebra.
We construct Backlund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the $sl(2)$ trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discre
In this work we give a mechanical (Hamiltonian) interpretation of the so called spectrality property introduced by Sklyanin and Kuznetsov in the context of Backlund transformations (BTs) for finite dimensional integrable systems. The property turns o
In this paper, we study the existence, stability and bifurcation of random complete and periodic solutions for stochastic parabolic equations with multiplicative noise. We first prove the existence and uniqueness of tempered random attractors for the
Normal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for th