ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic cold nuclear matter as dilute instanton gas

144   0   0.0 ( 0 )
 نشر من قبل Tomoki Taminato
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study cold nuclear matter based on the holographic gauge theory, where baryons are introduced as the instantons in the probe D8/D8 branes according to the Sakai-Sugimoto model. Within a dilute gas approximation of instantons, we search for the stable states via the variational method and fix the instanton size. We find the first order phase transition from the vacuum to the nuclear matter phase as we increase the chemical potential. At the critical chemical potential, we could see a jump in the baryon density from zero to a finite definite value. While the size of the baryon in the nuclear matter is rather small compared to the nucleus near the transition point, where the charge density is also small, it increases with the baryon density. Those behaviors obtained here are discussed by relating them to the force between baryons.



قيم البحث

اقرأ أيضاً

In a holographic model, which was used to investigate the color superconducting phase of QCD, a dilute gas of instantons is introduced to study the nuclear matter. The free energy of the nuclear matter is computed as a function of the baryon chemical potential in the probe approximation. Then the equation of state is obtained at low temperature. Using the equation of state for the nuclear matter, the Tolman-Oppenheimer-Volkov equations for a cold compact star are solved. We find the mass-radius relation of the star, which is similar to the one for quark star. This result is understood from the stiffness and the large speed of sound of the instanton gas considered here.
We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8/$overline{rm D8}$ branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility $chi(T)$ of QCD as a function of the temperature. Lattice QCD pr ovides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine $chi(T)$ in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
We study the holographic light meson spectra and their mass splitting in the nuclear medium. In order to describe the nuclear matter, we take into account the thermal charged AdS geometry with two flavor charges, which can be reinterpreted as the num ber densities of proton and neutron after some field redefinitions. We show that the meson mass splitting occurs when there exists the density difference between proton and neutron. Depending on the flavor charge, the mass of the positively (negatively) charged meson increases (decreases) as the density difference increases, whereas the neutral meson mass is independent of the density difference. In the regime of the large nucleon density with a relatively large number difference between proton and neutron, we find that negatively charged pion becomes massless in the nuclear medium, so the pion condensate can occur. We also investigate the binding energy of a heavy quarkonium in the nuclear medium, in which the binding energy of a heavy quarkonium becomes weaker as the density difference increases.
Axionic holographic RG flow solutions are studied in the context of general Einstein-Axion-Dilaton theories. A non-trivial axion profile is dual to the (non-perturbative) running of the $theta$-term for the corresponding instanton density operator. I t is shown that a non-trivial axion solution is incompatible with a non-trivial (holographic) IR conformal fixed point. Imposing a suitable axion regularity condition allows to select the IR geometry in a unique way. The solutions are found analytically in the asymptotic UV and IR regimes, and it is shown that in those regimes the axion backreaction is always negligible. The axion backreaction may become important in the intermediate region of the bulk. To make contact with the axion probe limit solutions, a systematic expansion of the solution is developed. Several concrete examples are worked out numerically. It is shown that the regularity condition always implies a finite allowed range for the axion source parameter in the UV. This translates into the existence of a finite (but large) number of saddle-points in the large $N_c$ limit. This ties in well with axion-swampland conjectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا