ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar populations of massive galaxies in the local Universe

154   0   0.0 ( 0 )
 نشر من قبل Richard McDermid
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

I present a brief review of the stellar population properties of massive galaxies, focusing on early-type galaxies in particular, with emphasis on recent results from the ATLAS3D Survey. I discuss the occurrence of young stellar ages, cold gas, and ongoing star formation in early-type galaxies, the presence of which gives important clues to the evolutionary path of these galaxies. Consideration of empirical star formation histories gives a meaningful picture of galaxy stellar population properties, and allows accurate comparison of mass estimates from populations and dynamics. This has recently provided strong evidence of a non-universal IMF, as supported by other recent evidences. Spatially-resolved studies of stellar populations are also crucial to connect distinct components within galaxies to spatial structures seen in other wavelengths or parameters. Stellar populations in the faint outer envelopes of early-type galaxies are a formidable frontier for observers, but promise to put constraints on the ratio of accreted stellar mass versus that formed in situ - a key feature of recent galaxy formation models. Galaxy environment appears to play a key role in controlling the stellar population properties of low mass galaxies. Simulations remind us, however, that current day galaxies are the product of a complex assembly and environment history, which gives rise to the trends we see. This has strong implications for our interpretation of environmental trends.



قيم البحث

اقرأ أيضاً

Using data from the Sloan Digital Sky Survey (SDSS; data release 7), we have conducted a search for local analogs to the extremely compact, massive, quiescent galaxies that have been identified at z > 2. We show that incompleteness is a concern for s uch compact galaxies, particularly for low redshifts (z < ~0.05) as a result of the SDSS spectroscopic target selection algorithm. We have identified 63 massive red sequence galaxies at 0.066 < z < 0.12 that are smaller than the median size-mass relation by a factor of 2 or more. Consistent with expectations from the virial theorem, the median offset from the mass-velocity dispersion relation for these galaxies is 0.12 dex. We do not find any galaxies with sizes and masses comparable to those observed at z ~ 2, implying a decrease in the comoving number density (at fixed size and mass) by a factor of > 5000. This result cannot be explained by incompleteness: at 0.066 < z <0.12, the SDSS spectroscopic sample should typically be ~75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as ~20%. To confirm that the absence of such compact massive galaxies in SDSS is not a spectroscopic selection effect, we have also looked for such galaxies in the SDSS photometric catalog, using photometric redshifts. While we do find signs of a bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider. Accepting the high redshift results, it is clear that massive galaxies must undergo significant structural evolution over z<2 in order to match the population seen in the local universe. Our results suggest that a highly stochastic mechanism like major mergers cannot be the primary driver of this strong size evolution.
By means of a semi-analytic model of galaxy formation, we show how the local observed relation between age and galactic stellar mass is affected by assuming a DM power spectrum with a small-scale cutoff. We compare results obtained by means of both a Lambda-cold dark matter (LambdaCDM) and a Lambda-warm dark matter (LambdaWDM) power spectrum - suppressed with respect to the LambdaCDM at scales below ~ 1 Mpc. We show that, within a LWDM cosmology with a thermal relic particle mass of 0.75 keV, both the mass-weighted and the luminosity-weighted age-mass relations are steeper than those obtained within a LambdaCDM universe, in better agreement with the observed relations. Moreover, both the observed differential and cumulative age distributions are better reproduced within a LambdaWDM cosmology. In such a scenario, star formation appears globally delayed with respect to the LambdaCDM, in particular in low-mass galaxies. The difficulty of obtaining a full agreement between model results and observations is to be ascribed to our present poor understanding of baryonic physics.
We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49s stellar halo out to ~ 100 kpc (7 Re) , where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B-V ~ 0.7); if this is purely a metallicity effect, it argues for extremely metal poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxys surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49s outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49s halo. Thus the extremely metal-poor nature of M49s extended halo provides some tension against current models for elliptical galaxy formation.
This paper is part of a series devoted to the study of the stellar populations in brightest cluster galaxies (BCGs), aimed at setting constraints on the formation and evolution of these objects. We have obtained high signal-to-noise ratio, long-slit spectra of 49 BCGs in the nearby Universe. Here, we derive Single Stellar Population (SSP)-equivalent ages, metallicities and alpha-abundance ratios in the centres of the galaxies using the Lick/IDS system of absorption line indices. We systematically compare the indices and derived parameters for the BCGs with those of large samples of ordinary elliptical galaxies in the same mass range. We find no significant differences between the index-velocity dispersion relations of the BCG data and those of normal ellipticals, but we do find subtle differences between the derived SSP-parameters. The BCGs show, on average, higher metallicity ([Z/H]) and alpha-abundance ([E/Fe]) values. We analyse possible correlations between the derived parameters and the internal properties of the galaxies (velocity dispersion, rotation, luminosity) and those of the host clusters (density, mass, distance from BCG to X-ray peak, presence of cooling flows), with the aim of dissentangling if the BCG properties are more influenced by their internal or host cluster properties. The SSP-parameters show very little dependence on the mass or luminosity of the galaxies, or the mass or density of the host clusters. Of this sample, 26 per cent show luminosity-weighted ages younger than 6 Gyr, probably a consequence of recent - if small - episodes of star formation. In agreement with previous studies, the BCGs with intermediate ages tend to be found in cooling-flow clusters with large X-ray excess.
142 - Kambiz Fathi 2011
Disk scale length and central surface brightness for a sample of about 29955 bright disk galaxies from the Sloan Digital Sky Survey have been analysed. Cross correlation of the SDSS sample with the LEDA catalogue allowed us to investigate the variati on of the scale lengths for different types of disk/spiral galaxies and present distributions and typical trends of scale lengths all the SDSS bands with linear relations that indicate the relation that connect scale lengths in one passband to another. We use the volume corrected results in the r-band and revisit the relation between these parameters and the galaxy morphology. The derived scale lengths presented here are representative for a typical galaxy mass of 10^10.8 solarmasses, and the RMS dispersion is larger for more massive galaxies. We analyse the scale-length-central disk brightness plane and further investigate the Freeman Law and confirm that it indeed defines an upper limit for disk central surface brightness in bright disks (r<17.0), and that disks in late type spirals (T > 6) have fainter central surface brightness. Our results are based on a sample of galaxies in the local universe (z< 0.3) that is two orders of magnitudes larger than any sample previously studied, and deliver statistically significant results that provide a comprehensive test bed for future theoretical studies and numerical simulations of galaxy formation and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا