ترغب بنشر مسار تعليمي؟ اضغط هنا

Can a marginally open universe amplify magnetic fields?

221   0   0.0 ( 0 )
 نشر من قبل Yuri Shtanov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a series of recent papers, including arXiv:1210.1183, it was claimed that large-scale magnetic fields generated during inflation in a spatially open universe could remain astrophysically significant at the present time since they experienced superadiabatic amplification specific to an open universe. We reexamine this assertion and show that, on the contrary, large-scale magnetic fields in a realistic open universe decay in much the same manner as they would in a spatially flat universe. Consequently, their amplitude today is extremely small (B0 < 10^{-59} G) and is unlikely to be of astrophysical significance.



قيم البحث

اقرأ أيضاً

In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
In the next decades, the gravitational-wave (GW) standard siren observations and the neutral hydrogen 21 cm intensity mapping (IM) surveys, as two promising non-optical cosmological probes, will play an important role in precisely measuring cosmologi cal parameters. In this work, we make a forecast for cosmological parameter estimation with the synergy between the GW standard siren observations and the 21 cm IM surveys. We choose the Einstein Telescope (ET) and the Taiji observatory as the representatives of the GW detection projects and choose the Square Kilometre Array (SKA) phase I mid-frequency array as the representative of the 21 cm IM experiments. We find that the synergy of the GW standard siren observations and the 21 cm IM surveys could break the cosmological parameter degeneracies. The joint ET+Taiji+SKA data give $sigma(H_0)=0.28 {rm km s^{-1} Mpc^{-1}}$ in the $Lambda$CDM model, $sigma(w)=0.028$ in the $w$CDM model, which are better than the results of $Planck$+BAO+SNe, and $sigma(w_0)=0.077$ and $sigma(w_a)=0.295$ in the CPL model, which are comparable with the results of $Planck$+BAO+SNe. In the $Lambda$CDM model, the constraint accuracies of $H_0$ and $Omega_{rm m}$ are less than or rather close to 1%, indicating that the magnificent prospects for non-optical precision cosmology are worth expecting.
In a Universe with a detectable nontrivial spatial topology the last scattering surface contains pairs of matching circles with the same distribution of temperature fluctuations --- the so-called circles-in-the-sky. Searches undertaken for nearly ant ipodal pairs of such circles in cosmic microwave background maps have so far been unsuccessful. Previously we had shown that the negative outcome of such searches, if confirmed, should in principle be sufficient to exclude a detectable non-trivial spatial topology for most observers in very nearly flat ($0<midOmega_{text{tot}}-1mid lesssim10^{-5}$) (curved) universes. More recently, however, we have shown that this picture is fundamentally changed if the universe turns out to be {it exactly} flat. In this case there are many potential pairs of circles with large deviations from antipodicity that have not yet been probed by existing searches. Here we study under what conditions the detection of a single pair of circles-in-the-sky can be used to uniquely specify the topology and the geometry of the spatial section of the Universe. We show that from the detection of a emph{single} pair of matching circles one can infer whether the spatial geometry is flat or not, and if so we show how to determine the topology (apart from one case) of the Universe using this information. An important additional outcome of our results is that the dimensionality of the circles-in-the-sky parameter space that needs to be spanned in searches for matching pair of circles is reduced from six to five degrees of freedom, with a significant reduction in the necessary computational time.
We use the cosmic microwave background temperature anisotropy to place limits on large-scale magnetic fields in an inhomogeneous (perturbed Friedmann) universe. If no assumptions are made about the spacetime geometry, only a weak limit can be deduced directly from the CMB. In the special case where spatial inhomogeneity is neglected to first order, the upper limit is much stronger, i.e. a few nano-G
By revising the application of the open quantum system approach to the early universe and extending it to the conditions beyond the Markovian approximation, we obtain a new non-Markovian quantum Boltzmann equation. Throughout the paper, we also devel op an extension of the quantum Boltzmann equation to describe the processes that are irreversible at the macroscopic level. This new kinetic equation is, in principle, applicable to a wide variety of processes in the early universe. For instance, using this equation one can accurately study the microscopic influence of a cosmic environment on a system of cosmic background photons or stochastic gravitational waves. In this paper, we apply the non-Markovian quantum Boltzmann equation to study the damping of gravitational waves propagating in a medium consisting of decoupled ultra-relativistic neutrinos. For such a system, we study the time evolution of the intensity and the polarization of the gravitational waves. It is shown that, in contrast to intensity and linear polarization which are damped, the circular polarization (V-mode) of the gravitational wave (if present) is amplified by propagating through such a medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا