ترغب بنشر مسار تعليمي؟ اضغط هنا

Controllable magnetic doping of the surface state of a topological insulator

104   0   0.0 ( 0 )
 نشر من قبل Jens Wiebe
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A combined experimental and theoretical study of doping individual Fe atoms into Bi2Se3 is presented. It is shown through a scanning tunneling microscopy study that single Fe atoms initially located at hollow sites on top of the surface (adatoms) can be incorporated into subsurface layers by thermally-activated diffusion. Angle-resolved photoemission spectroscopy in combination with ab-initio calculations suggest that the doping behavior changes from electron donation for the Fe adatom to neutral or electron acceptance for Fe incorporated into substitutional Bi sites. According to first principles calculations within density functional theory, these Fe substitutional impurities retain a large magnetic moment thus presenting an alternative scheme for magnetically doping the topological surface state. For both types of Fe doping, we see no indication of a gap at the Dirac point.



قيم البحث

اقرأ أيضاً

We performed broadband optical transmission measurements of Bi2Se3 and In-doped Bi(1-x)In(x)2Se3 thin films, where in the latter the spin-orbit coupling (SOC) strength can be tuned by introducing In. Drude and interband transitions exhibit In-depende nt changes that are consistent with evolution from metallic (x=0) to insulating (x=1) nature of the end compounds. Most notably, an optical absorption peak located at hw=1eV in Bi2Se3 is completely quenched at x=0.06, the critical concentration where the phase transition from TI into non-TI takes place. For this x, the surface state (SS) is vanished from the band structure as well. The correlation between the 1eV optical peak and the SS in the x-dependences suggests that the peak is associated with the SS. We further show that when Bi2Se3 is electrically gated, the 1eV-peak becomes stronger(weaker) when electron is depleted from (accumulated into) the SS. These observations combined together demonstrate that under the hw=1eV illumination electron is excited from a bulk band into the topological surface band of Bi2Se3. The optical population of surface band is of significant importance not only for fundamental study but also for TI-based optoelectronic device application.
The influence of magnetic dopants on the electronic and chemical environments in topological insulators (TIs) is a key factor when considering possible spintronic applications based on topological surface state properties. Here we provide spectroscop ic evidence for the presence of distinct chemical and electronic behavior for surface and bulk magnetic doping of Bi2Te3. The inclusion of Mn in the bulk of Bi2Te3 induces a genuine dilute ferromagnetic state, with reduction of the bulk band gap as the Mn content is increased. Deposition of Fe on the Bi2Te3 surface, on the other hand, favors the formation of iron telluride already at coverages as low as 0.07 monolayer, as a consequence of the reactivity of the Te-rich surface. Our results identify the factors that need to be controlled in the realization of magnetic nanosystems and interfaces based on TIs.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostruct ures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
128 - Y. S. Hou , , R. Q. Wu 2018
We propose to use ferromagnetic insulator MnBi2Se4/Bi2Se3/antiferromagnetic insulator Mn2Bi2Se5 heterostructures for the realization of the axion insulator state. Importantly, the axion insulator state in such heterostructures only depends on the mag netization of the ferromagnetic insulator and hence can be observed in a wide range of external magnetic field. Using density functional calculations and model Hamiltonian simulations, we find that the top and bottom surfaces have opposite half-quantum Hall conductance, with a sizable global spin gap of 5.1 meV opened for the topological surface states of Bi2Se3. Our work provides a new strategy for the search of axion insulators by using van der Waals antiferromagnetic insulators along with three-dimensional topological insulators.
The protected surface conductivity of topological insulators, carried by ultra-relativistic Dirac fermions, is in high demand for the next generation of electronic devices. Progress in the unambiguous identification of this surface contribution and, in a second step, its control are needed to move forward. Here we demonstrate both, with a combined transport and spectroscopy study of high-quality single crystals and mesoscopic devices of the topological insulator TlBiSe2. We show how various external stimuli-from thermal radiation, via low-intensity light, to high-intensity laser pumping and current driving-can boost the surface contribution, thereby making it both unambiguously detectable and potentially exploitable for applications. Once switched on, the extra surface contribution is persistent, with lifetimes of hundreds of years at low temperatures. We understand this effect in terms of the well-known concept of surface charge accumulation via a Schottky barrier formation, and propose that the same mechanism underlies also the slow relaxations seen with spectroscopic probes in our and other materials, which might thus also be persistent. We expect our technique to be readily transferable to other materials and probes, thereby shedding light on unexplained slow relaxations in transport and beyond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا