ﻻ يوجد ملخص باللغة العربية
We present the results of a comprehensive survey using the Arecibo Observatory for Zeeman splitting of OH lines in OH megamasers (OHMs). A total of seventy-seven sources were observed with the Arecibo telescope. Of these, maser emission could not be detected for eight sources, and two sources were only ambiguously detected. Another twenty-seven sources were detected at low signal-to-noise ratios or with interference that prevented placing any useful limits on the presence of magnetic fields. In twenty-six sources, it was possible to place upper limits on the magnitude of magnetic fields, typically between 10-30 mG. For fourteen sources, the Stokes V spectra exhibit features consistent with Zeeman splitting. Eleven of these fourteen are new detections, and the remaining three are re-detections of Stokes V detections in Robishaw et al. (2008). Among confident new detections, we derive magnetic fields associated with maser regions with magnitudes ranging from 6.1-27.6 mG. The distribution of magnetic field strengths suggests the magnetic fields in OH masing clouds in OHMs are larger than those in Galactic OH masers. The results are consistent with magnetic fields playing a dynamically important role in OH masing clouds in OHMs.
We report the results of a full-Stokes survey of all four 18 cm OH lines in 77 OH megamasers (OHMs) using the Arecibo Observatory. This is the first survey of OHMs that included observations of the OH satellite lines; only 4 of the 77 OHMs have exist
We present a multiwavelength study of the OH Megamaser galaxy (OHMG) IRAS16399-0937, based on new HST/ACS F814W and H$alpha$+[NII] images and archive data from HST, 2MASS, Spitzer, Herschel and the VLA. This system has a double nucleus, whose norther
Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different pha
We present the results of an extensive Arecibo observational survey of magnetic field strengths in the inter-core regions of molecular clouds to determine their role in the evolution and collapse of molecular clouds as a whole. Sensitive 18 cm OH Zee
We monitored the 22 GHz maser line in the lensed quasar MG J0414+0534 at z=2.64 with the 300-m Arecibo telescope for almost two years to detect possible additional maser components and to measure a potential velocity drift of the lines. The main mase