ترغب بنشر مسار تعليمي؟ اضغط هنا

A short proof that $chi$ can be bounded $epsilon$ away from $Delta+1$ towards $omega$

156   0   0.0 ( 0 )
 نشر من قبل Andrew King
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1998 the second author proved that there is an $epsilon>0$ such that every graph satisfies $chi leq lceil (1-epsilon)(Delta+1)+epsilonomegarceil$. The first author recently proved that any graph satisfying $omega > frac 23(Delta+1)$ contains a stable set intersecting every maximum clique. In this note we exploit the latter result to give a much shorter, simpler proof of the former. We include, as a certificate of simplicity, an appendix that proves all intermediate results with the exception of Halls Theorem, Brooks Theorem, the Lovasz Local Lemma, and Talagrands Inequality.



قيم البحث

اقرأ أيضاً

The second authors $omega$, $Delta$, $chi$ conjecture proposes that every graph satisties $chi leq lceil frac 12 (Delta+1+omega)rceil$. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way we discuss a stronger local conjecture, and prove that it holds for claw-free graphs with a three-colourable complement. To prove our results we introduce a very useful $chi$-preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so-called skeletal graphs.
The total influence of a function is a central notion in analysis of Boolean functions, and characterizing functions that have small total influence is one of the most fundamental questions associated with it. The KKL theorem and the Friedgut junta t heorem give a strong characterization of such functions whenever the bound on the total influence is $o(log n)$. However, both results become useless when the total influence of the function is $omega(log n)$. The only case in which this logarithmic barrier has been broken for an interesting class of functions was proved by Bourgain and Kalai, who focused on functions that are symmetric under large enough subgroups of $S_n$. In this paper, we build and improve on the techniques of the Bourgain-Kalai paper and establish new concentration results on the Fourier spectrum of Boolean functions with small total influence. Our results include: 1. A quantitative improvement of the Bourgain--Kalai result regarding the total influence of functions that are transitively symmetric. 2. A slightly weaker version of the Fourier--Entropy Conjecture of Friedgut and Kalai. This weaker version implies in particular that the Fourier spectrum of a constant variance, Boolean function $f$ is concentrated on $2^{O(I[f]log I[f])}$ characters, improving an earlier result of Friedgut. Removing the $log I[f]$ factor would essentially resolve the Fourier--Entropy Conjecture, as well as settle a conjecture of Mansour regarding the Fourier spectrum of polynomial size DNF formulas. Our concentration result has new implications in learning theory: it implies that the class of functions whose total influence is at most $K$ is agnostically learnable in time $2^{O(Klog K)}$, using membership queries.
A famous conjecture of Gyarfas and Sumner states for any tree $T$ and integer $k$, if the chromatic number of a graph is large enough, either the graph contains a clique of size $k$ or it contains $T$ as an induced subgraph. We discuss some results a nd open problems about extensions of this conjecture to oriented graphs. We conjecture that for every oriented star $S$ and integer $k$, if the chromatic number of a digraph is large enough, either the digraph contains a clique of size $k$ or it contains $S$ as an induced subgraph. As an evidence, we prove that for any oriented star $S$, every oriented graph with sufficiently large chromatic number contains either a transitive tournament of order $3$ or $S$ as an induced subdigraph. We then study for which sets ${cal P}$ of orientations of $P_4$ (the path on four vertices) similar statements hold. We establish some positive and negative results.
A short proof is given that the graphs with proper interval representations are the same as the graphs with unit interval representations.
In an emerging computing paradigm, computational capabilities, from processing power to storage capacities, are offered to users over communication networks as a cloud-based service. There, demanding computations are outsourced in order to limit infr astructure costs. The idea of verifiable computing is to associate a data structure, a proof-of-work certificate, to the result of the outsourced computation. This allows a verification algorithm to prove the validity of the result, faster than by recomputing it. We talk about a Prover (the server performing the computations) and a Verifier. Goldwasser, Kalai and Rothblum gave in 2008 a generic method to verify any parallelizable computation, in almost linear time in the size of the, potentially structured, inputs and the result. However, the extra cost of the computations for the Prover (and therefore the extra cost to the customer), although only almost a constant factor of the overall work, is nonetheless prohibitive in practice. Differently, we will here present problem-specific procedures in computer algebra, e.g. for exact linear algebra computations, that are Prover-optimal, that is that have much less financial overhead.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا