ﻻ يوجد ملخص باللغة العربية
Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Our aim is to obtain seismic constraints on the internal transport and surface loss of angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of $1.3 M_{odot}$ models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations. We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncertainties in the physical description of stars that could have an impact on the rotation profiles. For instance, we find that the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent viscosity by 2 orders of magnitude is able to significantly decrease the central rotation rate on the red-giant branch. Our results indicate that it is possible that the prescription for the horizontal turbulent viscosity largely underestimates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.
Asteroseismology with the space-borne missions CoRoT and Kepler provides a powerful mean of testing the modeling of transport processes in stars. Rotational splittings are currently measured for a large number of red giant stars and can provide strin
The observations of global stellar oscillations of post main-sequence stars by space-based photometry missions allowed to directly determine their internal rotation. These constraints have pointed towards the existence of angular momentum transport p
The space-borne missions CoRoT and Kepler opened up a new opportunity for better understanding stellar evolution by probing stellar interiors with unrivalled high-precision photometric data. Kepler has observed stellar oscillation for four years, whi
Transport of angular momentum is a long-standing problem in stellar physics which recently became more acute thanks to the observations of the space-borne mission emph{Kepler}. Indeed, the need for an efficient mechanism able to explain the rotation
We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation and consequent angular momentum transport by such waves. We find that the